
Python with Robots
Use the CodeBot to build real-world projects with code.

Mission 1 - Welcome

Welcome to the CodeSpace
Development Environment!

A virtual world for exploring robotics with code.

We're glad you're here!
You are about to experience a powerful learning and coding environment:

Learn to code in Python by completing challenging Missions.
Test your real-world programs in simulation or on a physical device.

Ready to begin your first Mission?
Click the NEXT button...

Objective 1 - Mission Objectives

Objectives
Each Mission contains a series of Objectives. You're now reading an Objective Panel.

Objectives are numbered on the Mission Bar to the right.
Click the number to show or hide the Objective Panel.
Use the icons at the top of the Mission Bar to choose from available Missions and Packs.

The goals to complete the Objective are below:

Goal:

Click the 1 on the Mission Bar to close the Objective Panel →

Then click 1 again to bring it back!

Solution:

N/A

Objective 2 - Text Editor

Text Editor
On the left side of your screen is the text editor.

You'll be typing in Python code here!
That's how you'll control your physical or virtual device.

Go ahead and type something in!

Goal:

Complete this Objective by making any change in the text editor.

Solution:

N/A

Python with Robots Mission Content

©2024 Firia Labs Appendix A 1 of 213

https://firialabs.com/

Objective 3 - Tool Box

Your Coding Toolbox
As you work through each mission you'll be adding concepts to your toolbox.

It's an important reference you will need in later missions!
And when you are coding and debugging your own remixes.

Collect 'em ALL!

When you see a tool, CLICK on it!

You won't have anything in your toolbox unless you put it there.

Access Your Tools

You can always open up your toolbox later for reference.

Just click the business_center at the right side of the window.

Goal:

Click the build tool text above to open the Toolbox and then close the Toolbox.

Tools Found: Debugging

Solution:

N/A

Objective 4 - Simulation Controls

Simulation Controls
Below the 3D view is your Simulation Toolbar.

There are controls to select a 3D filter_hdr environment.
You can also control the videocam Camera in the 3D scene, and more!

This is a virtual camera for zooming around inside the sim, not your webcam!
You can manage with a trackpad, but a mouse is highly recommended for 3D navigation.

Click on the Camera videocam menu below.

Select Help help
Click the close inside the Camera Help window to close it.

Want to hide these instructions?

Click the close at the upper-right corner.
You can always bring an Objective back by clicking its number on the right side.
Or you can maximize it by clicking check_box_outline_blank

Goals:

Open and close the Camera Help.

Rotate the camera view around the virtual device in the 3D scene!

Solution:

N/A

Python with Robots Mission Content

©2024 Firia Labs Appendix A 2 of 213

Quiz 1 - Your First Mission Quiz

Question 1: Are you ready to learn some Python coding with your physical device?

done Yes. This is simple!

close I don't think I can.

close It looks too complicated.

Question 2: Select the two things you learned in this mission.

done How to open an objective

done How to move the camera

close How to run a half marathon

close How to control the weather

Mission 1 Complete

Welcome to CodeSpace!
You've completed your first Mission.

You can always click the Mission Select icon at the upper right side of the window to go back to previous Missions.

You've learned the basics of Missions and Objectives.

Now it's time to get to know your device!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 3 of 213

Mission 2 - Introducing CodeBot
CodeBot is a computer on wheels with lots of sensors and controls built-in. You will be writing Python code to bring this hardware to
life!

There are quite a lot of hardware peripherals on CodeBot, including:

Outputs:

LED lights
Speaker
Motors
Infrared transmitters
Expansion connectors for external device
outputs
USB data and filesystem output

Inputs:

Line sensors
Proximity sensors
Motion and orientation sensor
(accelerometer)
Temperature sensor
Wheel rotation sensors
Pushbuttons
Infrared receivers
Expansion connectors for external device
inputs
USB data and filesystem input

Other:

WiFi transceiver (CB3 Only)

One of the best things about CodeBot is that all of that hardware is completely controlled by code that you write. That means it's up to
you to unlock the true potential of your robot.

Objective 1 - Motors

Motors - Programmable Electric Engines
CodeBot's motors power the wheels that move it around.

They convert electric power to mechanical rotation.

The picture at right shows a motor without its protective black cover, and with the
gearbox open.

You'll soon be controlling those motors with Python code!

Locate the motors in the 3D View, and click on one of them...

To hide these instructions click the close at the upper-right corner or press CLOSE

Hint:

You may need to rotate your camera to the back of the 'bot!

Goal:

Click one of the Motors in the 3D view

Tools Found: Motors

Solution:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 4 of 213

N/A

Objective 2 - LED Lights

LEDs - Lighting the Way
"Light Emitting Diodes" are tiny and efficient electronic components that produce light.

There are 17 visible light LEDs on CodeBot
...and there are 8 more LEDs that emit infrared light only robots can see ;-)

Like everything on CodeBot, they pretty much do nothing...

Until YOU write some code to control them!
You'll be doing that in the next mission.

Up close the LEDs look like little clear boxes:

Zoom In!

Use your mouse and the videocam Camera controls to zoom-in for a closer look at the LEDs.

Goal:

Click an LED on your virtual CodeBot in the 3d View!

Tools Found: LED

Solution:

N/A

Objective 3 - Speaker

Speaker - Make some Noise!
...or, make beautiful music. It's your choice.

There's a real speaker aboard your 'bot.
Inside this little black cylinder is an electromagnet with a permanent magnet to pull against.
Hey, that's basically what's going on in the motors too!

Goal:

Click on the Speaker in the 3D View

Tools Found: Speaker

Solution:

N/A

Python with Robots Mission Content

©2024 Firia Labs Appendix A 5 of 213

Objective 4 - Wheel Encoders

Wheel Encoders
Your code can control the power applied to the motors, but to know exactly how far the wheels have turned you'll need to sense rotation.
That's the job of these Encoders

View from beneath CodeBot

As the encoder disc rotates, an invisible IR (infrared) light beam passes through its slots. Your code can count the pulses of light to see
how far the wheel has rotated.

Hint:

The wheel encoders can be seen from the top of the 'bot.

If you're having a difficult time, try looking underneath it!

Goal:

Click on one of the black Encoder Discs in the 3D View

Tools Found: Wheel Encoders

Solution:

N/A

Objective 5 - Pushbuttons

Pushbuttons, Line Sensors, Proximity Sensors, Accelerometer, and more...
Okay, last objective for this "Intro" Mission... Then we start coding!

As you've seen, there's a lot happening on your CodeBot.
You'll explore all of it by writing Python code to complete Missions.
...and you're gonna need all those capabilities for the challenges we have in store!

Goal:

Complete this objective by clicking on a CodeBot Button in the 3D View.

(There are 3 of them to choose from!)

Tools Found: Buttons

Solution:

N/A

Python with Robots Mission Content

©2024 Firia Labs Appendix A 6 of 213

Quiz 1 - Don't Zap Your Bot!

Static electricity is a charge that can build up when you walk across carpet in socks or take off a wool sweater. It causes the jolt and
spark that happens sometimes when touching something grounded, like a faucet or lightswitch.

Hold your CodeBot by its edges, being gentle with the LEDs and other electronic components. They're all exposed on the board as with
most other Maker computers, so you can really get to know them. More on that in the next few pages...

Especially when the air is very dry (cold or arid climates) it's good practice to touch some grounded metal (desk, doorknob) before
handling the CodeBot to avoid damaging its sensitive components with static electric discharge.

Question 1: What should you do before handling your CodeBot?

done Touch some grounded metal

close Clean it with wet wipes

close Jumping jacks

Objective 6 - Connect the USB

Now, use the USB cable to connect the CodeBot to your computer.

Caution: Note

You may see a window pop-up when you plug in CodeBot.

Feel free to close this window, you won't need it for CodeSpace.

Connecting the USB cable does two things:

1. It lets your computer communicate with the CodeBot.
2. It provides 5 volt DC power to the CodeBot.

Make sure your USB cable is connected now!!

Hint:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 7 of 213

See the port the cable is plugged into?

Click that on the virtual 'bot!

You may need to rotate the camera!

Goal:

Click on the USB connection port in the 3D Scene.

Tools Found: USB

Solution:

N/A

Objective 7 - Link to CodeSpace

The CodeBot must be linked to your browser before it can be used with CodeSpace.
Connection Steps

1. Make sure the USB cable is connected both to your PC and the CodeBot.

2. Click the red bar below the code editor to open the USB connection dialog.

The connection bar looks like this:

The bar should look like this if your device is already connected:

3. Select "CodeBot" from the device list that pops up.

See the video at right for an example.

4. Click the Connect button in the pop up.

Goal:

Link your CodeBot to CodeSpace.

Hint: Make sure only one CodeX or CodeBot is connected.

Solution:

N/A

Objective 8 - Save the Code!

Time to create a file!
When you type code into the text editor panel on the left, it is automatically saved to your personal file-system in CodeSpace cloud!

Code is stored in files on a computer just like any other document.

Each code file should have a name that states its purpose.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 8 of 213

You should make a new file for each objective. Here's how:

1. Click the File menu button above the code editor.
2. Click New File...
3. Type in the name you'd like to give your new file.
4. Click the Create button.

Your new file should open in your code editor!!

Goal:

Create a new file named: LightsOn

If this file is already in your file system go ahead and use the New File... button anyway!

Double check your capitalization!!

Solution:

N/A

Objective 9 - The CodeTrek

Check out the CodeTrek!!
The CodeTrek is a CodeSpace tool that gives you:

A starting point for your program.
Detailed information about lines of code you need to write.
Explanations of coding topics.
Holes (TODOs) for you to fill in on your own!

TODOs

A # TODO: is an instruction in a code comment.

A comment is code that doesn't get run, you'll learn about them in-depth later.
TODOs are used in the real world all the time!

They tell you to come back here because there is still work TO DO!!
Most code editors recognize # TODO and highlight it in your code!!

Click the directions_walk CodeTrek button below to learn more about the code for an objective.

CodeTrek:

1 from botcore import leds

2 # TODO: Light USER LED 0

Hint:

There are two steps in the CodeTrek.

Make sure you see them both by hitting the "NEXT" button!

Goal:

Open the CodeTrek to learn about your code with the directions_walk button.

The CodeTrek will give you information about lines of code or give you more knowledge on a topic.

A # TODO: tells you to come back here because there is still work TO DO!!

TODOs are used in the real world all the time!
Most code editors recognize # TODO and highlight the line in your code!!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 9 of 213

Tools Found: Comments

Solution:

N/A

Objective 10 - Lights On!

Now it's time for you to type in some code!

Caution

Capitalization matters! Your code is case sensitive ("Number" is not the same as "number"!).
Punctuation is important!

(Relax, you're not going to break anything, but programming languages are very strict!)

Check the 'Trek!

Run It!

Watch for the LEDs in the center of CodeBot.

They're labeled BYTE and numbered 7-6-5-4-3-2-1-0.
These 8 LEDs are dedicated to the USER.

Use them to display general status about anything!
The other LEDs on CodeBot are located near peripherals.

Your code can use those LEDs to indicate sensor activity!

Try Your Skills: Illuminati Confirmed

CodeTrek:

1 from botcore import leds

2 leds.user_num(0, True)

Goals:

import the leds object from the botcore library.

Light the USER LED at index 0.

Tools Found: Punctuation, Syntax Highlighting, Underscore, CPU and Peripherals, import, bool

Solution:

The first line tells Python to import the leds object from the botcore library.

botcore provides direct access to CodeBot's hardware!

The second line uses leds from botcore!

The user_num() function controls the red "BYTE" LEDs by number.

Each LED can be ON or OFF, represented by boolean True or False values.
There are 8 user LEDs, numbered 0-7.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 10 of 213

1 from botcore import leds #@1
2 leds.user_num(0, True) #@2

Mission 2 Complete

You've completed another mission!

...and you're at the start of a fantastic adventure. Your journey will take you to greater heights - more missions are ahead to challenge
and amaze you!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 11 of 213

Mission 3 - Time and Motion
In this project you'll get CodeBot moving!

When you're writing code for CodeBot you're doing Physical Computing.
From cars to stage lights, code is at the heart of many things that get
you moving!
You'll use Python's time library to precisely control the timing of your
bot's actions.

Get your motors running!

Project Goals:

Flash CodeBot's LEDs in a controlled sequence.
Make a Light Show using all the LEDs.
Learn how to use the CodeSpace debugger .
Power up the motors to move and rotate your 'bot.
Write code to drive in a specified pattern.
Use pushbutton inputs to control the action.

Objective 1 - LED Sequencer

Create a New File!

Run It!

What do you notice when you run this code:

Can you see each LED turn ON in sequence?
Do you think they come on at exactly the same time?
...Or, do you think they activate one-at-a-time, but really quickly?

CodeTrek:

1 from botcore import leds
2 leds.user_num(0, True)
3 leds.user_num(1, True)
4 leds.user_num(2, True)
5 leds.user_num(3, True)

Goal:

Light up USER LEDS 0 through 4 in sequence.

Tools Found: Editor Shortcuts

Solution:

1 from botcore import leds
2 leds.user_num(0, True)
3 leds.user_num(1, True)
4 leds.user_num(2, True)
5 leds.user_num(3, True)

Objective 2 - The Debugger

Inside the Mind of the Computer!

Computers are fast. Even a small CPU like CodeBot's can execute millions of operations per second!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 12 of 213

The CodeSpace debugger lets you Step your program one line at a time, at your own speed, so
you can understand exactly what the computer is doing and debug your code.

Note: Each line of code runs after the Step button is clicked.

Concept: Stepping

You can execute the code one line at a time by using the STEP button.

This is a very powerful tool for debugging your code. Be sure to use it whenever you need to
understand more clearly what the code is doing!

Debug: Try stepping through your code!

Rather than pressing the play_arrowRUN button, you can press bug_reportDEBUG and have the computer step through your code.

Try it yourself and you'll see that each LED does light one-at-a-time!

1. Press the bug_reportDEBUG button to re-load your program and wait at the first line.
2. Keep pressing STEP IN to execute each line of code in turn.
3. The highlighted line executes after you click STEP IN.
4. Then the next line of code is highlighted, waiting and ready to go...
5. Check CodeBot's LEDs after each STEP!

Goal:

Step into your code with the CodeSpace Debugger.
First click bug_reportDEBUG then use the STEP IN button to step through your code.

Tools Found: CPU and Peripherals, Debugging

Solution:

1 from botcore import leds
2 leds.user_num(0, True)
3 leds.user_num(1, True)
4 leds.user_num(2, True)
5 leds.user_num(3, True)

Objective 3 - Slow it Down

When you step slowly through the code, the LEDs light in sequence. So you just need a way to delay the computer a little after it shows
each Image.

from time import sleep
sleep(1.0)

The sleep(1.0) above causes CodeBot to delay for 1 second before continuing.

You can try different times, like 0.5 or 3.14 seconds!
Notice you have to import sleep from Python's time library.

Do that just once at the top of your program.

Check the 'Trek!

Add a line with sleep(1.0) on the next line of code after each leds.user_num().

Run It!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 13 of 213

Watch CodeBot's LEDs when you press the RUN button.

CodeTrek:

 1 from botcore import leds
 2 # TODO: Import the sleep object

 3
 4 leds.user_num(0, True)
 5 sleep(1.0)

 6 leds.user_num(1, True)
 7 sleep(1.0)
 8 leds.user_num(2, True)
 9 sleep(1.0)
10 leds.user_num(3, True)

Goal:

Wait 1 second between each leds.user_num() call using sleep(1.0)

Tools Found: Timing, import

Solution:

 1 from botcore import leds
 2 from time import sleep
 3
 4 leds.user_num(0, True)
 5 sleep(1.0)
 6 leds.user_num(1, True)
 7 sleep(1.0)
 8 leds.user_num(2, True)
 9 sleep(1.0)
10 leds.user_num(3, True)

Objective 4 - Variable Speed!

It would be fun to play with some different delay times to change the speed of those LEDs. Right now the number 1 appears three times
in the code, and all must be changed to adjust the delay between LEDs lighting up.

Wouldn't it be nice to set the delay in one place?

Instead of repeating a literal number like 1 in your code, you can use a name instead. Read on to learn how much easier this makes it to
change your delay!

Concept: Variables!

A variable is a name to which you assign some data. The data could be a number, a True or False boolean value, or any
other type of information your program uses.

Variables must be defined like this before they are used:

delay = 1.0

Import sleep from the time library!

from time import sleep

Your code will stop here for 1.0 second!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 14 of 213

Check the 'Trek!

CodeTrek:

 1 from botcore import leds
 2 from time import sleep
 3
 4 delay = # TODO: Set delay to 1.0

 5
 6 leds.user_num(0, True)
 7 sleep(delay)

 8 leds.user_num(1, True)
 9 sleep(delay)
10 leds.user_num(2, True)
11 sleep(delay)
12 leds.user_num(3, True)

Goals:

Declare a variable named delay with a value of 1.0.

Wait delay second(s) between each leds.user_num() call using sleep(delay)

Tools Found: Variables, bool

Solution:

 1 from botcore import leds
 2 from time import sleep
 3
 4 delay = 1.0
 5
 6 leds.user_num(0, True)
 7 sleep(delay)
 8 leds.user_num(1, True)
 9 sleep(delay)
10 leds.user_num(2, True)
11 sleep(delay)
12 leds.user_num(3, True)

Objective 5 - Light Show!

Use your LED control capabilities to make CodeBot shine!

Turn LEDs ON and OFF to make a flashing display.
Try smaller time values for quick changes.

Check the 'Trek!

Modify your code to turn each LED OFF after the delay.

Declare your variable!

Set delay to 1.0 with the line:

delay = 1.0!

When delay is equal to 1.0, sleep(delay) is equal to sleep(1.0)!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 15 of 213

Run It!

Can you make your light show flashier?

Try a smaller delay, like delay = 0.1
Add more LEDs, up to leds.user_num(7, True)
Why not add leds.ls_num() line sensor LEDs to the party!

CodeTrek:

 1 from botcore import leds
 2 from time import sleep
 3
 4 delay = 1.0
 5
 6 leds.user_num(0, True)
 7 sleep(delay)
 8 # TODO: Turn LED 0 OFF!

 9
10 leds.user_num(1, True)
11 sleep(delay)
12 # TODO: Turn LED 1 OFF!

13
14 leds.user_num(2, True)
15 sleep(delay)
16 # TODO: Turn LED 2 OFF!

17
18 leds.user_num(3, True)

Goal:

After sleeping, turn OFF lit user LEDs using leds.user_num(num, False).

Tools Found: Keyword and Positional Arguments, LED

Solution:

 1 from botcore import leds
 2 from time import sleep
 3
 4 delay = 1.0
 5
 6 leds.user_num(0, True)
 7 sleep(delay)
 8 leds.user_num(0, False)
 9

The second argument leds.user_num takes is on.

Since we want to turn the light OFF, simply pass False!

leds.user_num(0, False)

Just like the last step, turn user LED 1 OFF!

leds.user_num(1, False)

One last time! Turn LED 2 OFF!

leds.user_num(2, False)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 16 of 213

10 leds.user_num(1, True)
11 sleep(delay)
12 leds.user_num(1, False)
13
14 leds.user_num(2, True)
15 sleep(delay)
16 leds.user_num(2, False)
17
18 leds.user_num(3, True)

Objective 6 - Bright Byte Lights!

Old school? Yes and No!

Check out the picture on the right. It's from the front panel of one of the first "personal
computers".

Do you see the 8 DATA LEDs?
8-bits of binary data is called a BYTE in Computer Science.

Our PCs and mobile devices have come a long way since then!

CodeBot's CPU is fantastically powerful compared to those old machines :-)
But just like PCs, phones, and ancient computers, at the core it fundamentally
operates in binary.
And since CodeBot happens to have a BYTE sized array of User LEDs, binary
is a great way to program them!

Concept: CodeBot LEDs

All of the CodeBot LEDs can be controlled with Python code.

User LEDs in the center of the 'bot.
Line Sensor LEDs across the front edge, directly above the line sensors.
Prox LEDs just in front of each proximity sensor.

You can control them all in a similar way, for example:

leds.user_num(0, True)
leds.ls_num(0, True)
leds.prox_num(0, True)

But they also have more powerful control functions, like the ability to display a value in binary.

Use Python's 0b prefix to designate binary numbers (1=ON, 0=OFF).

Ex: Light alternating user LEDs

leds.user(0b10101010)

Ex: Light all 5 ls LEDs

leds.ls(0b11111)

Click on the CodeBot LEDs tool to learn more.

Create a New File!

Use the File → New File menu to create a new file called BinaryLEDs.

Check the 'Trek!

Create a new file and name it BinaryLEDs.

Write code to control the Line Sensor LEDs on CodeBot, but this time do it with binary numbers.

The CodeTrek code uses binary values to animate the Line Sensor LEDs.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 17 of 213

Run It!

Try to add your own binary patterns to the sequence!

CodeTrek:

 1 from botcore import leds
 2 from time import sleep
 3
 4 leds.ls(0b00100)
 5 sleep(0.5)
 6 leds.ls(0b01110)
 7 sleep(0.5)
 8 # TODO: Light ALL the ls LEDs using binary

Goals:

Create a New File named BinaryLEDs.

Light the middle ls LED using binary.

Light the middle 3 ls LEDs using binary.

Light all ls LEDs using binary.

Tools Found: Binary Numbers, CPU and Peripherals, CodeBot LEDs

Solution:

 1 from botcore import leds
 2 from time import sleep
 3
 4 leds.ls(0b00100)
 5 sleep(0.5)
 6 leds.ls(0b01110)
 7 sleep(0.5)
 8 leds.ls(0b11111)

Quiz 1 - Checkpoint

You're off to a great start!

Controlling LEDs is the traditional starting point for lots of physical computing projects.
Now take a minute or two to review what you've learned.

Question 1: Why would you add a delay (sleep) after you turn on each LED?

done So you can see them turn on one at a time.

close So they will turn on.

close To give the LEDs time to cool off.

Simply set each value in the binary number to 1!

leds.ls(0b11111)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 18 of 213

Question 2: When you use the debugger, the line of code with the highlight:

done Will run the next time you press STEP.

close Ran the last time you pressed STEP.

close Is currently running.

close Will stop the program.

Question 3: The statement sleep(1.5)

done Pauses the program for 1.5 seconds.

close Pauses the program for 1.5 milliseconds

close Allocates 1.5 kilobytes of sleep space.

Question 4: What does from time import sleep do?

done Gives this code access to the "sleep" function from the "time" library.

close Sleeps from time to time.

close Allows this code to read the current time.

Question 5: Which LED does the following turn ON: leds.ls(0b00100)

done Line Sensor LED 2

close User LED 5

close Line Sensor LED 3

close Line Sensor LED 1

Objective 7 - Get Moving

It's time to power-up CodeBot's motors!!

Make sure you have batteries loaded into your 'bot.
Set the POWER Switch to BATT when you're using the motors.

Even when USB is connected this keeps your PC from having to supply all the power.

Caution

In the following steps, be careful as you run your programs! You'll need some space to let the 'bot move around. Also, it's
helpful if your USB cable is long enough to allow a bit of movement.

Run It!

CodeTrek:

1 from botcore import *

Importing * from a library imports everything!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 19 of 213

2 from time import sleep
3
4 motors.enable(True)

5 motors.run(LEFT, 50)

6 sleep(1.0)
7 # TODO: Disable the motors

Goals:

Enable your CodeBot's motors using motors.enable(True).

Power the LEFT motor at 50%.

Disable your CodeBot's motors using motors.enable(False).

Tools Found: Motors, import, Reboot

Solution:

1 from botcore import *
2 from time import sleep
3
4 motors.enable(True)
5 motors.run(LEFT, 50)
6 sleep(1.0)
7 motors.enable(False)

Objective 8 - Rotation Time!

You will need to use both motors for this one.

Spin the wheels in opposite directions to rotate your 'bot.
To rotate in-place, both wheels must have the same speed.
Just change the direction so one is negative and the other positive.

Check the 'Trek!

Modify your program a little, and you'll have it!

Check out the # Comments - they are optional for you to type.

Concept: Comments and Readability

In the CodeTrek code, did you notice the # comment lines?

As you write code, imagine that someone who has never seen it before will have to read it and figure it out.
A year from now, you might even pick up your own code and say: "what was I thinking!?"

In this case, it gives your code access to everything in botcore, including leds and more!

You have to call enable(True) before the motors will move!

Start by powering just one of the motors at 50%.

Turn the motors OFF before the program ends by passing False to motors.enable.

motors.enable(False)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 20 of 213

Readability in code means making it for humans to understand.

Use Comments - notes in the code about what you're doing.
Use descriptive names for things.
Use whitespace in keeping with the accepted style of the language.

In Python, anything that follows a # to the end of the line

...is a comment, meaning it is ignored by the computer.

Run It!

You'll need to plug in the USB cable and RUN your code as usual after any change.

Physical Interaction: Now unplug USB cable, and REBOOT!

Unplug the USB cable and press the REBOOT button to test out your program.

Does your 'bot spin around a full 360° circle?
Try making it spin longer! Faster! Sloooower...

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 motors.enable(True)
 5
 6 # Run LEFT motor at 50% power forward

 7 motors.run(LEFT, 50)
 8
 9 # TODO: Run RIGHT motor at 50% power backward

10
11 # Rotate for 1 second
12 sleep(1.0)
13
14 motors.enable(False)

Goals:

Run the LEFT motor forward at 50% power.

Run the RIGHT motor backward at 50% power.

Tools Found: Comments, Blank Lines and Whitespace, Reboot

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 motors.enable(True)
 5

This is a # comment!

In Python, this line will be skipped over!

Backwards?!

Negative integers makes the motor run backwards.
Therefore motors.run(RIGHT, -50) will turn the RIGHT motor backward at 50% power!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 21 of 213

 6 # Run LEFT motor at 50% power forward
 7 motors.run(LEFT, 50)
 8
 9 # Run RIGHT motor at 50% power backward
10 motors.run(RIGHT, -50)
11
12 # Rotate for 1 second
13 sleep(1.0)
14
15 motors.enable(False)

Objective 9 - First Navigation Challenge!

Your first of many such challenges to come...

Program CodeBot to Drive in a Square

Requirements:

Your bot's journey must start and end at approximately the same spot.
(you'll learn precise control later, just get close this time!)

The sides of the square must be about 1 foot (30cm) in length.

Concept: Algorithms

You're facing a problem to solve with code!

It's going to require a series of steps. (a sequence)
You'll likely make use of library functions along the way.

You're going to be making an Algorithm, dude!

Algorithms are precise sequences of instructions that the computer can follow exactly, one step at a time.

Begin your SQUARE algorithm by breaking the problem down into steps

1. Enable the motors
2. Go forward 1 foot
3. Turn right 90°
4. Go forward 1 foot
5. Turn right 90°
6. Go forward 1 foot
7. Turn right 90°
8. Go forward 1 foot
9. Turn right 90°

10. Disable the motors
11. Finished!

A few steps... but not too complicated, right?

Are you ready to code this?
Wait! First, one more pro-tip...

Concept: Divide and Conquer

Break your problem down into bite-sized pieces

Some steps in an algorithm may sound simple, but really they're hiding a few steps of their own! For example:

Go forward 1 foot

There is no built-in command for CodeBot to do that! So you need another algorithm to do just this step. (you might call it a
sub-algorithm!)

Go forward 1 foot
motors.run(LEFT, 50)
motors.run(RIGHT, 50)
sleep(3.0) # TEST THIS! Not sure what value is needed here...

Python with Robots Mission Content

©2024 Firia Labs Appendix A 22 of 213

When you're facing complexity, remember: Divide and Conquer!

Create a New File!

Use the File → New File menu to create a new file called NavSquare.

Check the 'Trek!

Run It!

This one will take some testing and experimentation to get right!

CodeTrek:

1 from botcore import *
2 from time import sleep
3
4 # Navigate in a SQUARE pattern
5 # TODO: ...just add code!

Goals:

Call motor.run atleast 6 times.

Call sleep atleast 6 times.

Tools Found: import, Divide and Conquer, Variables

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4
 5 # Run LEFT motor at 50% power forward
 6 motors.run(LEFT, 50)
 7
 8 # Run RIGHT motor at 50% power backward
 9 motors.run(RIGHT, -50)
10
11 motors.run(LEFT, 50)
12 motors.run(RIGHT, -50)
13
14 motors.run(LEFT, 50)
15 motors.run(RIGHT, -50)
16
17 # Rotate for 1 second
18 sleep(1.0)
19 sleep(1.0)
20 sleep(1.0)
21 sleep(1.0)
22 sleep(1.0)
23 sleep(1.0)
24 motors.enable(False)

Objective 10 - Choose Your Adventure!

Your final Time and Motion series project is to make your NavSquare program more user-friendly.

Imagine that you gave your 'bot to someone for testing...

Hypothetical User Feedback:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 23 of 213

"As soon as I run the program it starts moving. Yikes! I want it to only
move if I push a button first."
"It always goes the same direction around the square. Boring! I want to
use push-buttons to choose right turns or left turns."

Push-Button Controls

You'll need to learn about CodeBot buttons to satisfy this feature request!

The botcore function you'll need is called buttons.was_pressed()
But you also need a way to change the control flow of your program!

Python's if statement is what you need:

Can you follow the algorithm below? Check out the control flow tool for an explanation!

if buttons.was_pressed(0):
 # turn left.
elif buttons.was_pressed(1):
 # turn right.
else:
 # stop - no button was pressed.

Concept: Control Flow and Branching

The if condition statement tells Python to only run the block of code indented beneath it if the condition is True.

elif is short for "else if"

Be sure all code you want to run inside a block is indented at the same level.

The colon : at the end of if expressions introduces a new block.
So always indent the next line after a colon!

Pro Tip: Use the TAB key to indent!

In the spirit of divide and conquer, test your knowledge of CodeBot buttons and control flow with a new standalone program
before you add it to your NavSquare program.

Create a New File!

Use the File → New File menu to create a new file called WhatIf.

Check the 'Trek!

The provided code will make sure you understand how buttons and the if statement work!

Run It!

Watch for the USER LED sequence 4 ... 3 ... and make sure you press a button during the countdown.

Just a momentary press will do. No need to hold down the button.

Debug

Try stepping through this code.

Press BTN-0 or BTN-1 while the debugger is waiting on a line.
Is the button press still detected when your code reaches the if statements?

Use the debugger to step through the if, elif, and else when NO button is pressed.
Does it completely skip the if statement?
OR does it test the if buttons.was_pressed(): and just skip the indented code beneath it?

Python with Robots Mission Content

©2024 Firia Labs Appendix A 24 of 213

Does buttons.was_pressed() detect a button press that happens while the debugger is stopped on a line of code?

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Give user 2 seconds to press a button.
 5 # Use LEDs to show "countdown"
 6 leds.user_num(4, True)
 7 sleep(1.0)
 8 leds.user_num(3, True)
 9 sleep(1.0)
10
11 # Set LEDs based on which button was pressed
12 if buttons.was_pressed(0):

13 leds.user_num(0, True)
14 elif buttons.was_pressed(1):
15 leds.user_num(7, True)

16 else:
17 leds.user(0b00000000)

Hint:

Make sure you press the STEP IN button all the way through the program!

You'll know you're there when the program ends!

Goals:

Call leds.user_num(0, True) if BTN-0 is pressed.

bug_reportDEBUG your program and use the STEP IN button.

Tools Found: Buttons, Branching, Indentation, Divide and Conquer

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Give user 2 seconds to press a button.
 5 # Use LEDs to show "countdown"
 6 leds.user_num(4, True)
 7 sleep(1.0)
 8 leds.user_num(3, True)
 9 sleep(1.0)
10
11 # Set LEDs based on which button was pressed
12 if buttons.was_pressed(0):
13 leds.user_num(0, True) #@1
14 elif buttons.was_pressed(1):
15 leds.user_num(7, True) #@2

If button 0 was pressed, the following indented code will be executed!

In this case, leds.user_num(0, True) would be called.

If button 0 was NOT pressed and button 1 WAS pressed,
 execute leds.user_num(7, True).

If button 0 was NOT pressed and button 1 was NOT pressed,
 execute leds.user(0b00000000).

Python with Robots Mission Content

©2024 Firia Labs Appendix A 25 of 213

16 else:
17 leds.user(0b00000000) #@3

Objective 11 - Button it Up!

Now that you've mastered CodeBot buttons and control flow you can complete your NavSquare project.

Start with an LED Countdown so the user has time to press a button.
Then use if, elif, and else based on buttons.was_pressed() to choose

LEFT turns
RIGHT turns
or STOP

Type in the Code

Use the File → Browse Files... menu to re-open your NavSquare program.

Add code so it begins just like the previous step:

An LED Countdown at the start, to give the user time to press a button.
An if ...algorithm to select navigation direction based on push buttons.

Navigate in a SQUARE pattern with push-button control.
TODO: ...just add code!

Don't forget to use the Editor Shortcuts if you need to copy a block of code.

In a future project you will learn ways to reduce repetition, but for now just make it work!

Run It!

Test your code thoroughly!

Be sure to test all 3 user commands:
BTN-0 → LEFT TURNS
BTN-1 → RIGHT TURNS
No button → STOP

"If it's not tested, it's broken"

- Bruce Eckel

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Use LEDs to show "countdown"
 5 leds.user_num(4, True)
 6 sleep(1.0)
 7 leds.user_num(3, True)
 8 sleep(1.0)

 9
10 if buttons.was_pressed(0):
11 # TODO: Turn LEFT in a square!

Start with the LED countdown from last objective.

When the user hits BTN-0, run your
square algorithm LEFT.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 26 of 213

12 elif buttons.was_pressed(1):
13 # TODO: Turn RIGHT in a square!

14 else:
15 # TODO: Stop the motors!

Goals:

Start with an LED Countdown to give the user time to press a button.

Alternate leds.user_num and sleep atleast twice.

Use:

if buttons.was_pressed(0):
elif buttons.was_pressed(1):

else:

Call motor.run atleast 6 times.

Tools Found: Buttons, Branching, Editor Shortcuts, LED, Motors

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Give user 2 seconds to press a button.
 5 # Use LEDs to show "countdown"
 6 leds.user_num(4, True)
 7 sleep(1.0)
 8 leds.user_num(3, True)
 9 sleep(1.0)
10
11 # Set LEDs based on which button was pressed
12 if buttons.was_pressed(0):
13 leds.user_num(0, True) #@1
14 elif buttons.was_pressed(1):
15 leds.user_num(7, True) #@2
16 motors.run(LEFT, 100)
17 motors.run(RIGHT, 100)
18 motors.run(LEFT, 100)
19 motors.run(LEFT, 100)
20 motors.run(RIGHT, 100)
21 motors.run(LEFT, 100)
22 motors.run(RIGHT, 100)
23 motors.run(RIGHT, 100)
24 else:
25 motors.enable(False)

Mission 3 Complete

You've learned some fundamental computer science and robotics principles:

Controlling LEDs and Motors with specific timing and sequencing.
Using Python language import libraries.
Reading CodeBot buttons inputs.
Changing the control flow of your programs on the fly.

When the user hits BTN-1, run your
square algorithm RIGHT.

If the user does nothing, STOP the motors.

motors.enable(False)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 27 of 213

This code is for real!

Yeah, robots rock this kind of code. But so do:

Digital coffee makers and espresso machines.
Beans, water, heat, timing and sequencing - sweet!

Music sequencers.
Electric toothbrushes.
...and more!

Try Your Skills

Suggested Re-mix Ideas:

Make CodeBot drive in a circle.
Make the LEDs flash in a pattern of your choice

...while CodeBot is driving in a square!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 28 of 213

Mission 4 - Animatronics
You have been hired by a major Theme Park!

Your task is to create a new Animatronic Robot Exhibition.

Gotta write some Python code and get the show running with CodeBot!

At a coffee shop meeting, the manager gave you a classic Napkin Sketch
of what she's looking for.

Your notes from the meeting:

The robot starts out "Asleep", constantly blinking RED LEDs in a "cool"
pattern.
Each guest presses a button as they enter the small entrance room.
When 5 guests have entered, the show starts!
Move forward 3 feet.
Spin around about 360° while making "cute robot sounds".
Play a greeting "Fanfare" sound.

After that, a cast member will reposition and reboot the robot to be ready for
the next group of guests.

Project Goals:

Blink red 'user' LEDs constantly in a "cool" pattern.
Count to 5 guests using CodeBot buttons BTN-0.

Upgrade 1: Show count on green 'LS' LEDs.
Upgrade 2: Beep when a button is pressed.

When count is 5, drive forward 3 feet.
Make "cute robot sounds" while rotating 360°
Play a short "fanfare" tune over the speaker

Objective 1 - Forever Flashing

Create a New File!

Concept

A while condition: statement tells Python to repeat the block of code indented beneath it as long as the given condition is
True.

In the code above we used the literal value True as the condition, so we have an infinite loop - one that never ends, because
True is always... True!

Run It!

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Define variables for blink delay and LED number.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 29 of 213

 5 delay = 0.5
 6 n_led = 0
 7
 8 while True:

 9 leds.user_num(n_led, True)
10 sleep(delay)
11 leds.user_num(n_led, False)
12 sleep(delay)

Goals:

Declare variables n_led and delay.

Use a while True: loop.

Tools Found: CodeBot LEDs, Loops, Indentation, bool, Variables

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Define variables for blink delay and LED number.
 5 delay = 0.5
 6 n_led = 0
 7
 8 while True:
 9 leds.user_num(n_led, True)
10 sleep(delay)
11 leds.user_num(n_led, False)
12 sleep(delay)

Objective 2 - A Cool Pattern

Check the 'Trek!

Concept: Updating a Variable

You can assign a new value to a variable at any time.

It's very common for the new value to be based on the old value of the variable!

That's what is happening with this code:

Add +1 to n_led, and store result in n_led.
n_led = n_led + 1

Does it look odd to have n_led on both sides of the assignment statment?

Just remember that everything to the right of the equals runs first.
So the assignment happens in two stages.

For example, if n_led was 0 before: 1. Do the right hand side: n_led + 1 → 0 + 1 → 1 1. Next, do assignment: n_led ← 1

So after the update, n_led is 1.

Run It!

while: condition repeats the indented block of code as
long as the condition is True.

To run infinitely, simply set condition to True!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 30 of 213

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.5
 5 n_led = 0
 6
 7 while True:
 8 leds.user_num(n_led, True)
 9 sleep(delay)
10 leds.user_num(n_led, False)
11 sleep(delay)
12
13 # TODO: Add +1 to n_led, and store result in n_led.

Goal:

Add +1 to n_led and store the result in n_led.

Tools Found: Loops, Variables, Branching, Indentation

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.5
 5 n_led = 0
 6
 7 while True:
 8 leds.user_num(n_led, True)
 9 sleep(delay)
10 leds.user_num(n_led, False)
11 sleep(delay)
12
13 # Add +1 to n_led, and store result in n_led.
14 n_led = n_led + 1

Objective 3 - Fixing A Cool Pattern

Squashin' Bugs

Debug

Concept: double equals sign

Why is there a "double equal" sign in the code?

A single equal means "assignment".
Like assigning n_led = 0 above your loop.

A double equal is a comparison operator, just like > and friends.

Run It!

CodeTrek:

 1 from botcore import *
 2 from time import sleep

Take the value of n_led and increase it's value by 1.

n_led = n_led + 1

Python with Robots Mission Content

©2024 Firia Labs Appendix A 31 of 213

 3
 4 delay = 0.5
 5 n_led = 0
 6
 7 while True:
 8 leds.user_num(n_led, True)
 9 sleep(delay)
10 leds.user_num(n_led, False)
11 sleep(delay)
12
13
14 # Add +1 to n_led, and store result in n_led.
15 n_led = n_led + 1
16 if n_led == 8:

17 # TODO: reset n_led

Goals:

Use if n_led == 8: in your while loop.

Within the if n_led == 8: code block:

Reset n_led to 0

Tools Found: Branching, Comparison Operators, undefined

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.5
 5 n_led = 0
 6
 7 while True:
 8 leds.user_num(n_led, True)
 9 sleep(delay)
10 leds.user_num(n_led, False)
11 sleep(delay)
12
13
14 # Add +1 to n_led, and store result in n_led.
15 n_led = n_led + 1
16 if n_led == 8:
17 n_led = 0
18
19

Objective 4 - Counting the Guests - part 1

Here's your next objective in this project:

Count CodeBot buttons BTN-0 presses up to 5 guests.
When the count reaches 5 you need to break out of the loop so CodeBot can do the next move - driving forward!

Is there a Python statement to break out of a loop?

Glad you asked! To break out of a loop, use a statement called... wait for it...

Indentation Note:

The if statement is indented to be inside the while loop.
But under the if statement is a second level of indentation:
a block of code that runs only when the if expression is True.

Set n_led back to 0 to restart the cycle!

n_led = 0

Python with Robots Mission Content

©2024 Firia Labs Appendix A 32 of 213

break

This simple statement exits the nearest enclosing loop.

Check the 'Trek!

Make a small addition at the end of the code inside your while loop.

To start with, just test the break statement you just learned about.
Break out of the loop immediately when BTN-0 is pressed.

Mind your indentation!

Run It!

Test it out!

Are you able to break out of the loop by pressing BTN-0?

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.1
 5 n_led = 0
 6
 7 while True:
 8 leds.user_num(n_led, True)
 9 sleep(delay)
10 leds.user_num(n_led, False)
11 # No sleep here!
12
13
14 # Add +1 to n_led, and store result in n_led.
15 n_led = n_led + 1
16 if n_led == 8:
17 n_led = 0
18
19 # Count guests when BTN-0 pressed
20 if buttons.was_pressed(0):
21 # TODO: Break out of the loop

Goal:

Use the break statement.

Tools Found: Buttons, Indentation, Loops

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.1
 5 n_led = 0
 6
 7 while True:
 8 leds.user_num(n_led, True)
 9 sleep(delay)
10 leds.user_num(n_led, False)
11 # No sleep here!
12

Use the break statement to stop the loop!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 33 of 213

13
14 # Add +1 to n_led, and store result in n_led.
15 n_led = n_led + 1
16 if n_led == 8:
17 n_led = 0
18
19 # Count guests when BTN-0 pressed
20 if buttons.was_pressed(0):
21 break

Objective 5 - Counting the Guests - part 2

Check the 'Trek!

Run It!

How's it counting?

Test your program a few times!

Not just once or twice!
Do the complete 5-count at least four times, watching the green LEDs closely each time you press BTN-0.

Caution: Contact Bounce

Have you noticed that sometimes a single button-press causes more than one count?

Pushing a button causes two metal pieces to contact each other, allowing electric current to flow.

At a microscopic level, those metal "contacts" bounce a little before settling down.

In the next step you will add code to debounce the button-press.

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.1
 5 n_led = 0
 6 n_guests = 0

 7
 8 while True:
 9 leds.user_num(n_led, True)
10 sleep(delay)
11 leds.user_num(n_led, False)
12
13 # Add +1 to n_led, and store result in n_led.
14 n_led = n_led + 1
15 if n_led == 8:
16 n_led = 0
17
18 # Count guests when BTN-0 pressed
19 if buttons.was_pressed(0):
20 # TODO: Use line sensor LEDs to show guest count

Dont forget to assign 0 to the variable n_guests up here!

Display variable n_guests by lighting the corresponding
LED number with the function:

leds.ls_num(n_guests, True)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 34 of 213

21 # TODO: Increment n_guests

22
23 if n_guests == 5:
24 break

Goals:

Increment n_guests when button 0 is pressed.

Display the guest count using the Line Sensor LEDs.

Tools Found: CodeBot LEDs, Buttons, Variables

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.1
 5 n_led = 0
 6 n_guests = 0
 7
 8 while True:
 9 leds.user_num(n_led, True)
10 sleep(delay)
11 leds.user_num(n_led, False)
12
13 # Add +1 to n_led, and store result in n_led.
14 n_led = n_led + 1
15 if n_led == 8:
16 n_led = 0
17
18 # Count guests when BTN-0 pressed
19 if buttons.was_pressed(0):
20 leds.ls_num(n_guests, True)
21 n_guests = n_guests + 1
22
23 if n_guests == 5:
24 break

Objective 6 - Beep Beep, I'm a Bot!

Audible Button Feedback Tones

Now it's time for you to code the second "upgrade" goal of this project:

Upgrade 2: Beep when a button is pressed.

Concept: CodeBot Speaker

This project uses just two basic functions of CodeBot's Speaker

spkr.pitch(440)
Start playing a continuous tone at a given frequency in Hertz (ex: 440Hz)

spkr.off()
Stop all sounds.

Check the 'Trek!

Armed with the above knowledge, you are ready to add beeps to your code!

Just like n_led above! Update variable
n_guests by adding 1.

n_guests = n_guests + 1

Python with Robots Mission Content

©2024 Firia Labs Appendix A 35 of 213

Hints:

It's like blinking an LED, but with sound: ON→delay→OFF.
Insert your beep code right below the if buttons.was_pressed(0):.

Run It!

Sounding good?

Sounds add a whole new dimension to the project.
I think it improves the User Interface since guests will know for sure they've been counted.

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.1
 5 n_led = 0
 6 n_guests = 0
 7
 8 while True:
 9 leds.user_num(n_led, True)
10 sleep(delay)
11 leds.user_num(n_led, False)
12
13 # Add +1 to n_led, and store result in n_led.
14 n_led = n_led + 1
15 if n_led == 8:
16 n_led = 0
17
18
19 # Count guests when BTN-0 pressed
20 if buttons.was_pressed(0):
21 # TODO: Play a tone at 440Hz

22 sleep(0.1)
23 # TODO: Turn the speaker off

24
25 leds.ls_num(n_guests, True)
26 n_guests = n_guests + 1
27
28
29 if n_guests == 5:
30 break

Goal:

When button 0 is pressed:

Play a continuous tone at 440Hz using spkr.pitch(frequency).
Call sleep(0.1).

Turn off the speaker using spkr.off().

Tools Found: Speaker, UI, Buttons

Use the function spkr.pitch(frequency) to play a sound on your 'bot's speaker!

To play a sound at 440Hz:

spkr.pitch(440)

Stop all sound from your 'bot's speaker with the function spkr.off()

Python with Robots Mission Content

©2024 Firia Labs Appendix A 36 of 213

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.1
 5 n_led = 0
 6 n_guests = 0
 7
 8 while True:
 9 leds.user_num(n_led, True)
10 sleep(delay)
11 leds.user_num(n_led, False)
12
13 # Add +1 to n_led, and store result in n_led.
14 n_led = n_led + 1
15 if n_led == 8:
16 n_led = 0
17
18
19 # Count guests when BTN-0 pressed
20 if buttons.was_pressed(0):
21 spkr.pitch(440)
22 sleep(0.1)
23 spkr.off()
24
25 leds.ls_num(n_guests, True)
26 n_guests = n_guests + 1
27
28
29 if n_guests == 5:
30 break

Objective 7 - Beep Beep 2

One more thing - Debouncing the Button

We now have an additional delay right after the button press is detected, but the problem is still present!

Concept: was_pressed() Back Story

Consider how buttons.was_pressed(0) works. It actually does two things:

Return True if a button has been pressed.
Button presses are monitored by a CPU interrupt handler.

Reset the internal status of the button to False.
...so it won't return True again unless the button was pressed again since last was_pressed(0).

But when the button bounces, here's the sequence:

1. User presses button... now in slooow moootiiooon...
2. First Contact!
3. was_pressed(0) → True # we detected the first press!
4. It's all good. The internal status of the button is reset to False.
5. Bounce!!
6. The CPU interrupt handler saves the was_pressed status.

Oh No! ...Next time around the loop when we call was_pressed(0) it will remember this bounce :-(

Concept: Debounce

Debouncing a button is simple:

1. Detect a button press
2. Delay long enough for the bouncing contacts to settle down.
3. Reset internal button press status.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 37 of 213

You're already doing the first two steps:

You detect a button press with buttons.was_pressed(0).
The beep lasts for 0.1 seconds, which is plenty of time for bouncing to settle down.

But how do you reset the internal button press status ??

Easy! Just call buttons.was_pressed(0) again.

It really doesn't matter whether it returns True or False...
The important thing is that was_pressed() resets the internal status.

Check the 'Trek!

Now that you understand what's happening, the fix is one simple line of code.

Insert a call to buttons.was_pressed(0) just after your beep code.

Run It!

Test a few runs, and you'll notice the button presses are spot-on!

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.1
 5 n_led = 0
 6 n_guests = 0
 7
 8 while True:
 9 leds.user_num(n_led, True)
10 sleep(delay)
11 leds.user_num(n_led, False)
12
13 # Add +1 to n_led, and store result in n_led.
14 n_led = n_led + 1
15 if n_led == 8:
16 n_led = 0
17
18
19 # Count guests when BTN-0 pressed
20 if buttons.was_pressed(0):
21 spkr.pitch(440)
22 sleep(0.1)
23 spkr.off()
24
25 # TODO: After delay, DEBOUNCE the button

26
27 leds.ls_num(n_guests, True)
28 n_guests = n_guests + 1
29
30
31 if n_guests == 5:
32 break

Goal:

Debouce the button by calling buttons.was_pressed(0) after the speaker delay.

Reset the internal button press status by calling was_pressed again!

buttons.was_pressed(0)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 38 of 213

Tools Found: CPU and Peripherals, Buttons

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 delay = 0.1
 5 n_led = 0
 6 n_guests = 0
 7
 8 while True:
 9 leds.user_num(n_led, True)
10 sleep(delay)
11 leds.user_num(n_led, False)
12
13 # Add +1 to n_led, and store result in n_led.
14 n_led = n_led + 1
15 if n_led == 8:
16 n_led = 0
17
18
19 # Count guests when BTN-0 pressed
20 if buttons.was_pressed(0):
21 spkr.pitch(440)
22 sleep(0.1)
23 spkr.off()
24
25 # After delay, DEBOUNCE the button
26 buttons.was_pressed(0)
27
28 leds.ls_num(n_guests, True)
29 n_guests = n_guests + 1
30
31
32 if n_guests == 5:
33 break

Quiz 1 - Checkpoint

Your project is going well!

Animatronics is a great way to expand your coding skills.
Now take a minute or two to review what you've learned.

Question 1:

n = 7
n = n + 1

What is the value of n after the statement n = n + 1 runs?

done 8

close 7

close 6

close 1

close 'm'

Question 2: Will the following program turn the LED on?

from botcore import leds
while False:
 leds.user_num(0, True)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 39 of 213

done No.

close Yes.

Question 3:

from botcore import leds
from time import sleep

i = 0
while i < 3:
 leds.user_num(0, True)
 sleep(1.0)
 leds.user_num(0, False)
 sleep(1.0)

i = i + 1

How many times will the LED flash when the code above runs?

done Infinite times. The increment is outside the loop.

close Two times.

close Three times.

Question 4: The buttons.was_pressed(0) function returns True when:

done The button has been pressed since was_pressed(0) was last called.

close The button has been pressed since the program started.

close The button was pressed in the last 100 milliseconds.

Objective 8 - Moving Forward

Check the 'Trek!

Run It!

Adjust the parameters of sleep() and motors.run() (by changing the values
passed into them) until your 'bot is moving forward like a runway model making a
full-turn and stopping at the end of the catwalk!

Press CodeBot's reboot button to quickly restart and try again.

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Sweep LEDs, counting guests as they arrive
 5 delay = 0.1
 6 n_led = 0
 7 n_guests = 0
 8
 9 while True:
10 leds.user_num(n_led, True)
11 sleep(delay)
12 leds.user_num(n_led, False)
13
14 # Add +1 to n_led, and store result in n_led.
15 n_led = n_led + 1
16 if n_led == 8:
17 n_led = 0

Python with Robots Mission Content

©2024 Firia Labs Appendix A 40 of 213

18
19 # Count guests when BTN-0 pressed
20 if buttons.was_pressed(0):
21 spkr.pitch(440)
22 sleep(0.1)
23 spkr.off()
24
25 # After delay, DEBOUNCE the button
26 buttons.was_pressed(0)
27
28 leds.ls_num(n_guests, True)
29 n_guests = n_guests + 1
30
31 if n_guests == 5:
32 break
33
34
35 # Move forward 3 feet

36 motors.enable(True)
37 # TODO: run left motor
38 # TODO: run right motor
39 # TODO: sleep just long enough...

40
41 # Spin 360 degrees

42 # TODO: run both motors in opposite directions
43 # TODO: sleep just long enough...
44
45 # Stop
46 motors.enable(False)
47

Goals:

Run both motors forward, then sleep.

Try to drive 3 feet forward.

Run both motors in opposite directions, then sleep.

Try to do a 360!

Tools Found: Indentation, Motors, Parameters, Arguments, and Returns

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Sweep LEDs, counting guests as they arrive

This will take some trial and error.

Take your time!

Reference the previous mission if you need a refresher!

Your code for driving 3 feet forward may look like this:

motors.run(LEFT, 50)
motors.run(RIGHT, 50)
sleep(2)

Similarly to driving 3 feet,
spinning 360 degrees is going to take some trial and error.

Run your motors in opposite directions!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 41 of 213

 5 delay = 0.1
 6 n_led = 0
 7 n_guests = 0
 8
 9 while True:
10 leds.user_num(n_led, True)
11 sleep(delay)
12 leds.user_num(n_led, False)
13
14 # Add +1 to n_led, and store result in n_led.
15 n_led = n_led + 1
16 if n_led == 8:
17 n_led = 0
18
19 # Count guests when BTN-0 pressed
20 if buttons.was_pressed(0):
21 spkr.pitch(440)
22 sleep(0.1)
23 spkr.off()
24
25 # After delay, DEBOUNCE the button
26 buttons.was_pressed(0)
27
28 leds.ls_num(n_guests, True)
29 n_guests = n_guests + 1
30
31 if n_guests == 5:
32 break
33
34
35 # Move forward 3 feet
36 motors.enable(True)
37 motors.run(LEFT, 50)
38 motors.run(RIGHT, 50)
39 sleep(2)
40
41 # Spin 360 degrees
42 # TODO: run both motors in opposite directions
43 # TODO: sleep just long enough...
44 motors.run(LEFT, 50)
45 motors.run(RIGHT, -50)
46 sleep(1)
47
48 # Stop
49 motors.enable(False)
50
51

Objective 9 - Cute Robot Sounds

Type in the Code

Run It!

How does it sound?

Interesting... but...
Pretty quick, right?

Maybe you can stretch it out and make it sound more "robot-like" if you
loop your new sound!

Run It!

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3

Python with Robots Mission Content

©2024 Firia Labs Appendix A 42 of 213

 4 # Outer loop to play sound 10 times
 5 count = 0
 6 while count < 10:

 7 # TODO: Iterate the count variable

 8
 9 # Sweep the frequency from 100-1000
10 f = 100
11 while f < 1000:
12 f = f + 1
13 spkr.pitch(f)
14
15 spkr.off()
16
17 # Sweep LEDs, counting guests as they arrive
18 delay = 0.1
19 n_led = 0
20 n_guests = 0
21
22 while True:
23 leds.user_num(n_led, True)
24 sleep(delay)
25 leds.user_num(n_led, False)
26
27 # Add +1 to n_led, and store result in n_led.
28 n_led = n_led + 1
29 if n_led == 8:
30 n_led = 0
31
32 # Count guests when BTN-0 pressed
33 if buttons.was_pressed(0):
34 spkr.pitch(440)
35 sleep(0.1)
36 spkr.off()
37
38 # After delay, DEBOUNCE the button
39 buttons.was_pressed(0)
40
41 leds.ls_num(n_guests, True)
42 n_guests = n_guests + 1
43
44 if n_guests == 5:
45 break
46
47 # Move forward 3 feet
48 motors.enable(True)
49 motors.run(LEFT, 50)
50 motors.run(RIGHT, 50)
51 sleep(2.0)
52
53 # Spin 360 degrees
54 motors.run(LEFT, -50)
55 motors.run(RIGHT, -50)
56 sleep(0.5)
57
58 # Stop
59 motors.enable(False)

Goals:

Sweep the frequency from 100-1000 using a while loop with the condition:

while f < 1000:

Sweep the frequency from 100-1000 10 times using a while loop with the condition:

This loop will iterate until the variable count is greater than 9.

Iterate the variable count!

count = count + 1

Python with Robots Mission Content

©2024 Firia Labs Appendix A 43 of 213

while count < 10:

Tools Found: Speaker, Editor Shortcuts, Loops, import, Indentation, Iterable, Variables

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 # Outer loop to play sound 10 times
 5 count = 0
 6 while count < 10:
 7 count = count + 1
 8
 9 # Sweep the frequency from 100-1000
10 f = 100
11 while f < 1000:
12 f = f + 1
13 spkr.pitch(f)
14
15 spkr.off()
16
17 # Sweep LEDs, counting guests as they arrive
18 delay = 0.1
19 n_led = 0
20 n_guests = 0
21
22 while True:
23 leds.user_num(n_led, True)
24 sleep(delay)
25 leds.user_num(n_led, False)
26
27 # Add +1 to n_led, and store result in n_led.
28 n_led = n_led + 1
29 if n_led == 8:
30 n_led = 0
31
32 # Count guests when BTN-0 pressed
33 if buttons.was_pressed(0):
34 spkr.pitch(440)
35 sleep(0.1)
36 spkr.off()
37
38 # After delay, DEBOUNCE the button
39 buttons.was_pressed(0)
40
41 leds.ls_num(n_guests, True)
42 n_guests = n_guests + 1
43
44 if n_guests == 5:
45 break
46
47 # Move forward 3 feet
48 motors.enable(True)
49 motors.run(LEFT, 50)
50 motors.run(RIGHT, 50)
51 sleep(2.0)
52
53 # Spin 360 degrees
54 motors.run(LEFT, -50)
55 motors.run(RIGHT, -50)
56 sleep(0.5)
57
58 # Stop
59 motors.enable(False)

Objective 10 - Really Cute Sounds

This time try for something a little more melodic.

Rather than sweeping the pitch, go for a random "beep" - "bloop" effect with single tones.

To make random tones you'll be using the random Python module, so look for a new import statement.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 44 of 213

Concept: random

Python's random module makes it easy to work with random numbers.

One function it provides is randrange(start, stop). This generates a random integer that's greater than or equal to start and
less than stop. See the complete docs for more details.

from random import randrange

Get random number from [1 to 8)
f = randrange(1, 8)

Type in the Code

Modify your code as follows:

Leave the outer loop that counts to 10 as-is.
Replace the inner loop which was sweeping the pitch from 100 to 1000 (Hz).
In its place, do the following:

Pick a random pitch between 100 and 1000Hz (use randrange()).
Play that pitch for 0.1 seconds.

That's it!

Run It!

Try that one a few times...

Pretty cute huh?
Aw... it's adorable!

That's more like it.

Adjust the while count < 10 to count higher if you need to increase the duration of cute sounds.

Remember, it needs to play for as long as it takes CodeBot to spin.
You might want to slow down the motors while spinning, to give more time for sounds to play!

Check the 'Trek!

Now you need to move this code to its proper place

This code replaces the sleep() while spinning, so make sure to delete that line.
Select the whole block of code, from count = 0 to spkr.off().
Cut it with CTRL-X, then position your cursor near the bottom of your code where you've just started the spin.
Use CTRL-V to paste the code where you need it.
Oh, and don't forget to leave from random import randrange at the top of your code

Run It!

Try it yourself first. Code is here if you need it...

Python with Robots Mission Content

©2024 Firia Labs Appendix A 45 of 213

Wow! You are almost finished.

Make any adjustments needed to your code.

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3 from random import randrange

 4
 5 # Sweep LEDs, counting guests as they arrive
 6 delay = 0.1
 7 n_led = 0
 8 n_guests = 0
 9
10 while True:
11 leds.user_num(n_led, True)
12 sleep(delay)
13 leds.user_num(n_led, False)
14
15 # Add +1 to n_led, and store result in n_led.
16 n_led = n_led + 1
17 if n_led == 8:
18 n_led = 0
19
20 # Count guests when BTN-0 pressed
21 if buttons.was_pressed(0):
22 spkr.pitch(440)
23 sleep(0.1)
24 spkr.off()
25
26 # After delay, DEBOUNCE the button
27 buttons.was_pressed(0)
28
29 leds.ls_num(n_guests, True)
30 n_guests = n_guests + 1
31
32 if n_guests == 5:
33 break
34
35 # Move forward 3 feet
36 motors.enable(True)
37 motors.run(LEFT, 50)
38 motors.run(RIGHT, 50)
39 sleep(2.0)
40
41
42 # Spin 360 degrees
43 motors.run(RIGHT, -50)
44
45 # Play "cute sounds" while spinning
46 count = 0
47 while count < 10:
48 count = count + 1
49
50 f = # TODO: Choose a random frequency

51 spkr.pitch(f)
52 sleep(0.1)
53
54 # Stop sounds
55 spkr.off()
56

Don't forget to leave this line at the top of your file!

Use the function randrange(start, stop) to generate the random frequency.

f = randrange(100, 1000)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 46 of 213

57 # Stop motors
58 motors.enable(False)
59
60

Goals:

Import randrange from random.

Assign f to a random frequency using randrange(start, stop)

Copy and paste your "cute sounds" code near the bottom of the file.

Place it right before you turn OFF the motors.

Tools Found: import, Random Numbers, int, Motors, Functions

Solution:

 1 from botcore import *
 2 from time import sleep
 3 from random import randrange
 4
 5 # Sweep LEDs, counting guests as they arrive
 6 delay = 0.1
 7 n_led = 0
 8 n_guests = 0
 9
10 while True:
11 leds.user_num(n_led, True)
12 sleep(delay)
13 leds.user_num(n_led, False)
14
15 # Add +1 to n_led, and store result in n_led.
16 n_led = n_led + 1
17 if n_led == 8:
18 n_led = 0
19
20 # Count guests when BTN-0 pressed
21 if buttons.was_pressed(0):
22 spkr.pitch(440)
23 sleep(0.1)
24 spkr.off()
25
26 # After delay, DEBOUNCE the button
27 buttons.was_pressed(0)
28
29 leds.ls_num(n_guests, True)
30 n_guests = n_guests + 1
31
32 if n_guests == 5:
33 break
34
35 # Move forward 3 feet
36 motors.enable(True)
37 motors.run(LEFT, 50)
38 motors.run(RIGHT, 50)
39 sleep(2.0)
40
41
42 # Spin 360 degrees
43 motors.run(RIGHT, -50)
44
45 # Play "cute sounds" while spinning
46 count = 0
47 while count < 10:
48 count = count + 1
49
50 # Choose a random frequency
51 f = randrange(100, 1000)
52 spkr.pitch(f)
53 sleep(0.1)
54

Python with Robots Mission Content

©2024 Firia Labs Appendix A 47 of 213

55 # Stop sounds
56 spkr.off()
57
58 # Stop motors
59 motors.enable(False)

Objective 11 - FanFare!

The final step in this project is to play a Fanfare tune to greet the
guests.

A call to the Park's Director of Bands got you a snippet of sheet music for
CodeBot to play.

Notes
Sheet music is written with notes!

In order to play a note, you just need to know the corresponding frequency!
For example, F4 is 349 Hz!

Lets play a note!

Once again, test out your new code near the top of the file!

Right below your import statements is a good place to add the following.

Type in the Code

Write code to play an F4 for 0.4 seconds.

Be sure to call spkr.off() after playing the note.
Also, add a sleep(0.05) after turning the sound off.[articulation]

from botcore import *
from time import sleep
from random import randrange

Play the first note of Fanfare!
spkr.pitch(349)
sleep(0.4)
spkr.off()
sleep(0.05)

1. Articulation gap - gives some separation between notes, rather than slurring them. The 0.05 duration is just a guess, to
give a little space between notes. To be precise you should subtract that from the overall note duration. But keep it simple
for now!

Run It!

That was... NOTE worthy!

Now of course you could copy and paste those 4 lines a few more times, make changes, and complete the rest of the
song.
But even for this short song that would add up to many lines of code!
Too bad there's not a function in botcore like note(freq, duration).

A single line could replace all 4 of the lines above!

That function doesn't exist... yet! You can define your OWN functions

Click on the functions tool above and learn the basics.
Then move on to test your knowlege!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 48 of 213

Check the 'Trek!

Define a function to play a single note:

It should take 2 parameters: def note(freq, duration):
Select your old "note" code and press TAB to indent it beneath the def ...
Update spkr.pitch() and sleep() to use the arguments freq and duration.

After you define the new function, go ahead and test it with the first note of the Fanfare.

Your program should sound the same as before, but now it's ready to rock!

Run It!

Try out your shiny new function!

Being able to define custom functions will make it much easier for you to write more advanced programs.

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3 from random import randrange
 4
 5 # Function to play a note with given frequency and duration
 6 def note(freq, duration):

 7 spkr.pitch(freq)
 8 sleep(duration)
 9 spkr.off()
10 sleep(0.05)

11
12 # TODO: Play the first note of Fanfare!

13
14 # Sweep LEDs, counting guests as they arrive
15 delay = 0.1
16 n_led = 0
17 n_guests = 0
18
19 while True:
20 leds.user_num(n_led, True)

note(freq, duration) takes speaker frequency and sleep duration
as arguments to play a note!

It uses the code you wrote earlier in the objective.

You need to define a function before you
can call it!

This short sleep will prevent the notes from slurring.

If you feel like the notes aren't distinct enough, feel free to increase
this value!

Call it just like you would sleep or randrange!

Before you turned your code into a function,
you were playing F4 for 0.4 seconds.

To replicate that note, simply call your new function:

note(349, 0.4)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 49 of 213

21 sleep(delay)
22 leds.user_num(n_led, False)
23
24 # Add +1 to n_led, and store result in n_led.
25 n_led = n_led + 1
26 if n_led == 8:
27 n_led = 0
28
29 # Count guests when BTN-0 pressed
30 if buttons.was_pressed(0):
31 spkr.pitch(440)
32 sleep(0.1)
33 spkr.off()
34
35 # After delay, DEBOUNCE the button
36 buttons.was_pressed(0)
37
38 leds.ls_num(n_guests, True)
39 n_guests = n_guests + 1
40
41 if n_guests == 5:
42 break
43
44 # Move forward 3 feet
45 motors.enable(True)
46 motors.run(LEFT, 50)
47 motors.run(RIGHT, 50)
48 sleep(2.0)
49
50 # Spin 360 degrees
51 motors.run(RIGHT, -50)
52
53 # Play "cute sounds" while spinning
54 count = 0
55 while count < 15:
56 count = count + 1
57
58 # Choose a random frequency
59 f = randrange(100, 1000)
60 spkr.pitch(f)
61 sleep(0.1)
62
63 # Stop sounds
64 spkr.off()
65
66 # Stop motors
67 motors.enable(False)

Goals:

Define a function named note that has freq and duration as parameters.

Play an F4 note for 0.4 seconds by calling note(349, 0.4).

Tools Found: import, Functions, Indentation, Keyword and Positional Arguments, Parameters, Arguments, and Returns

Solution:

 1 from botcore import *
 2 from time import sleep
 3 from random import randrange
 4
 5 # Function to play a note with given frequency and duration
 6 def note(freq, duration):
 7 spkr.pitch(freq)
 8 sleep(duration)
 9 spkr.off()
10 sleep(0.05) #@1
11
12 # Play the first note of Fanfare!
13 note(349, 0.4)
14
15 # Sweep LEDs, counting guests as they arrive

Python with Robots Mission Content

©2024 Firia Labs Appendix A 50 of 213

16 delay = 0.1
17 n_led = 0
18 n_guests = 0
19
20 while True:
21 leds.user_num(n_led, True)
22 sleep(delay)
23 leds.user_num(n_led, False)
24
25 # Add +1 to n_led, and store result in n_led.
26 n_led = n_led + 1
27 if n_led == 8:
28 n_led = 0
29
30 # Count guests when BTN-0 pressed
31 if buttons.was_pressed(0):
32 spkr.pitch(440)
33 sleep(0.1)
34 spkr.off()
35
36 # After delay, DEBOUNCE the button
37 buttons.was_pressed(0)
38
39 leds.ls_num(n_guests, True)
40 n_guests = n_guests + 1
41
42 if n_guests == 5:
43 break
44
45 # Move forward 3 feet
46 motors.enable(True)
47 motors.run(LEFT, 50)
48 motors.run(RIGHT, 50)
49 sleep(2.0)
50
51 # Spin 360 degrees
52 motors.run(RIGHT, -50)
53
54 # Play "cute sounds" while spinning
55 count = 0
56 while count < 15:
57 count = count + 1
58
59 # Choose a random frequency
60 f = randrange(100, 1000)
61 spkr.pitch(f)
62 sleep(0.1)
63
64 # Stop sounds
65 spkr.off()
66
67 # Stop motors
68 motors.enable(False)

Objective 12 - Putting It All Together

Turning the notes into Fanfare!
Now, to decode the musical notation into something that you can write Python code for:

There are just two pitches: F4 (349 Hz) and C5 (523 Hz).
Musical timing is in "beats", and the table below breaks the tune into 16 slices of time.

For this tune, just make those 1/16 slices equal 0.1 seconds each.

Note 1/16 Beats→FrequencySeconds
F4 4 349 Hz 0.4
rest 2 -- 0.2
F4 1 349 Hz 0.1
F4 1 349 Hz 0.1
C5 8 523 Hz 0.8

Check the 'Trek!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 51 of 213

Now to put it ALL together

Using your new note() function, write the whole Fanfare tune.
Use variables to define notes F4 and C5.
A musical "rest" is a silent pause. Simply sleep() for the specified duration.
Move the code to the very end of your program, where it belongs!

Run It!

This should satisfy all the project requirements!

In my version I added a pause for effect before the Fanfare.
You may want to adjust things to your liking also!

There's plenty of room to improve this project further!

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3 from random import randrange
 4
 5 # Sweep LEDs, counting guests as they arrive
 6 delay = 0.1
 7 n_led = 0
 8 n_guests = 0
 9
10 while True:
11 leds.user_num(n_led, True)
12 sleep(delay)
13 leds.user_num(n_led, False)
14
15 # Add +1 to n_led, and store result in n_led.
16 n_led = n_led + 1
17 if n_led == 8:
18 n_led = 0
19
20 # Count guests when BTN-0 pressed
21 if buttons.was_pressed(0):
22 spkr.pitch(440)
23 sleep(0.1)
24 spkr.off()
25
26 # After delay, DEBOUNCE the button
27 buttons.was_pressed(0)
28
29 leds.ls_num(n_guests, True)
30 n_guests = n_guests + 1
31
32 if n_guests == 5:
33 break
34
35 # Move forward 3 feet
36 motors.enable(True)
37 motors.run(LEFT, 50)
38 motors.run(RIGHT, 50)
39 sleep(2.0)
40
41 # Spin 360 degrees
42 motors.run(RIGHT, -50)
43
44 # Play "cute sounds" while spinning
45 count = 0
46 while count < 15:
47 count = count + 1
48
49 # Choose a random frequency
50 f = randrange(100, 1000)
51 spkr.pitch(f)
52 sleep(0.1)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 52 of 213

53
54 # Stop sounds
55 spkr.off()
56
57 # Stop motors
58 motors.enable(False)
59
60
61 # Pause for effect
62 sleep(0.5)
63
64 # Function to play a note with given frequency and duration
65 def note(freq, duration):

66 spkr.pitch(freq)
67 sleep(duration)
68 spkr.off()
69 sleep(0.05)
70
71 # Define musical note frequencies
72 F4 = 349
73 C5 = 523

74
75 # Play the Fanfare!
76 note(F4, 0.4)
77 sleep(0.2)
78 note(F4, 0.1)
79 # TODO: Play the missing note!

80 note(C5, 0.8)
81

Goals:

Define the notes by assigning the respective frequencies to the following variables.

F4

C5

Play Fanfare using your note function and the F4 and C5 variables!

Tools Found: Variables, Functions, Readability

Solution:

 1 from botcore import *
 2 from time import sleep
 3 from random import randrange
 4
 5 # Sweep LEDs, counting guests as they arrive
 6 delay = 0.1
 7 n_led = 0

Move your function definition down here!

This won't change the functionality of your program,
it just looks better!

Define the note frequencies to make the code more readable.

Oh dear!

A note is missing!

Reference the table in the instructions to
complete the song!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 53 of 213

 8 n_guests = 0
 9
10 while True:
11 leds.user_num(n_led, True)
12 sleep(delay)
13 leds.user_num(n_led, False)
14
15 # Add +1 to n_led, and store result in n_led.
16 n_led = n_led + 1
17 if n_led == 8:
18 n_led = 0
19
20 # Count guests when BTN-0 pressed
21 if buttons.was_pressed(0):
22 spkr.pitch(440)
23 sleep(0.1)
24 spkr.off()
25
26 # After delay, DEBOUNCE the button
27 buttons.was_pressed(0)
28
29 leds.ls_num(n_guests, True)
30 n_guests = n_guests + 1
31
32 if n_guests == 5:
33 break
34
35 # Move forward 3 feet
36 motors.enable(True)
37 motors.run(LEFT, 50)
38 motors.run(RIGHT, 50)
39 sleep(2.0)
40
41 # Spin 360 degrees
42 motors.run(RIGHT, -50)
43
44 # Play "cute sounds" while spinning
45 count = 0
46 while count < 15:
47 count = count + 1
48
49 # Choose a random frequency
50 f = randrange(100, 1000)
51 spkr.pitch(f)
52 sleep(0.1)
53
54 # Stop sounds
55 spkr.off()
56
57 # Stop motors
58 motors.enable(False)
59
60
61 # Pause for effect
62 sleep(0.5)
63
64 # Function to play a note with given frequency and duration
65 def note(freq, duration):
66 spkr.pitch(freq)
67 sleep(duration)
68 spkr.off()
69 sleep(0.05)
70
71 # Define musical note frequencies
72 F4 = 349
73 C5 = 523
74
75 # Play the Fanfare!
76 note(F4, 0.4)
77 sleep(0.2)
78 note(F4, 0.1)
79 note(F4, 0.1)
80 note(C5, 0.8)
81

Mission 4 Complete

Python with Robots Mission Content

©2024 Firia Labs Appendix A 54 of 213

It's a great feeling when a plan comes together!

You started with an ambitious set of Goals.
A lot of creativity was needed to make this exhibition a success.
And there were a few surprises along the way! Who knew you'd learn
about:

Debouncing contacts on push-button switches.
Making pulse-laser-disruptinator sounds.
Translating sheet music to Python code.
...and more!

And... This is real-world stuff!

From Movie FX, to Art Installations, to Theme Parks, you'll find coders
just like you making the magic happen!
Counting button presses? How about traffic monitors with pressure switches to count traffic?
Your Python coding toolkit is growing. A lot of cool applications you see every day are now within your ability to craft with code!

Try Your Skills

Suggested Re-mix Ideas:

Make the Flashing User LED sequence sweep both ways, first to the left, then to the right.
You could use an if statement inside your loop to decide whether to increment or decrement (subtract 1 from)
n_led.

Increase the number of Guests the exhibit can hold to 15.
Display the count as a binary number on the Line Sensor LEDs, using leds.ls(n_guests)

Make the Audible Button Feedback Tones increase to higher frequencies as the number of Guests increases.
Use your note() function to compose and play an enchanting melody during the Move Forward part of the exhibit.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 55 of 213

Mission 5 - Fence Patrol
In this project you'll gain an in-depth understanding of CodeBot's Line
Sensors

CodeBot has several sensors onboard, giving it the ability to interact with
its environment.
Those 5 high-performance Line Sensors let your Python code respond to
changes as CodeBot moves across a surface.
From robot housekeepers to self-driving cars, the sensing and control
techniques you'll learn in this project apply to all kinds of intelligent systems!

Think about what has driven CodeBot in the previous projects:

Your code used timing with the sleep() statement.
And you've already done some sensing, by detecting CodeBot buttons.

You can still use all those tools, but these sensors really expand your 'bots abilities!

Project Goals:

Read the Line Sensors and display the results on the green LEDs right above them.
Use analog readings to measure the contrast between different surfaces.
Make a "contact counter" to show each line-detect on the User LEDs.
Teach CodeBot to drive between the lines - the Fence Patrol 'bot!

Objective 1 - Line Sensors Up-Close!

How do the line sensors work?

Take a look at the close-up diagram to the right:

The emitter is like a flashlight, shining invisible light.
The detector is like your eyes - judging how bright the reflection is.
The reflector could be anything! A taped line on the floor, or any object placed
near the detector.

The detected brightness level can vary based on:

Reflectivity of the surface:
Reflective → shiny surfaces, white or light colors.
Not-Reflective → black or dark colors, empty space.

Distance of the surface from the sensor.

So without further ado, on to the API...

Concept: API

Application Programming Interface

"The details of how your program interacts with different services it needs."

You've already been using APIs:

The motors, leds and other parts of the botcore API.
The time library is part of Python's amazing standard library, which offers lots of APIs to Operating System services and
more!

Your code can read the brightness level of the reflected infrared light as an analog value with the function:

ls.read(num) # Sensor 'num' can be 0, 1, 2, 3, or 4

This function turns on the emitter, reads the detector, then turns the emitter back off.
The value it returns is an integer between 0 and 4095, since the ADC (analog-to-digital) converter is 12 bits resolution (212

= 4096 numbers).

Python with Robots Mission Content

©2024 Firia Labs Appendix A 56 of 213

Create a New File!

Use the File → New File menu to create a new file called LineSense.

Type in the Code

Try stepping through the following code.

You will need to step through this in the debugger with the Debug Panel visible and the "Globals" dropdown open.
That will allow you to see the val values the sensor is returning.

from botcore import *
while True:
 # Read line sensor 0
 val = ls.read(0)

Debug

Step through the code.

Can you see a difference in val when you put a reflective object near the sensor?
See how the distance of your finger from the sensor affects the reflected light?

Goals:

Click the menu button at the lower-right to open the console panel.

Enter DEBUG mode on the CodeBot by pressing the Debug Program bug_report button.

Use the debugger Step In button to step through the code.

Tools Found: Line Sensors, Analog to Digital Conversion, int, Binary Numbers

Solution:

1 from botcore import *
2 while True:
3 # Read line sensor 0
4 val = ls.read(0)

Objective 2 - The Debug Console

Text messages from your Code

It's great to be able to use the debugger to inspect variables!

But wouldn't it be nice to continuously display sensor values to a screen?

Python's built-in print() function is made for that!

As it runs, your program can print text messages about what it's doing.

If you click on the console panel you can type-in Python statements directly. This is
called the REPL.

Concept: REPL

"Read Evaluate Print Loop"

A name for the "command line" that languages like Python offer. If you were to code your own "REPL" in Python, it might look
something like this:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 57 of 213

while True:
 # Read a statement from the Keyboard. (press ENTER)
 # Evaluate the statement. (execute the Python code!)
 # Print the result to the Console.

Besides being a place to see print() statement output, the REPL is a great way to test out snippets of code, language features,
and APIs as you decide how to use them in your code.

You'll have a chance to test some commands on the REPL later. For now, go back to your code in the Editor and try adding a print()
statement to show the sensor value on the Debug Console!

Type in the Code

Add a print() statement to display val to the Debug Console each time through the loop.

from botcore import *
while True:
 # Read line sensor 0
 val = ls.read(0)

 # Display the sensor value to the Console
 print(val)

Run It!

When you run this, the values are going to stream by very quickly!

The print() statement can do a lot more than just display numbers.

You can give it multiple arguments: strings, integers, etc.

Ex: print("Your name is ", name, " and your address is ", address)

Check the 'Trek!

Modify your code to add a label to your sensor value.

The output lines should look something like: "Sensor 0 reading = 325"

Run It!

Isn't it so much nicer to have a description along with all those numbers!

CodeTrek:

1 from botcore import *
2 while True:
3 # Read line sensor 0
4 val = ls.read(0)
5
6 # Display the sensor value to the Console
7 # TODO: Add a label to the printed sensor val

Goals:

Print the value of line sensor 0 to the console.

The print function can take multiple values!
Add a string as the first argument to your print statement.

print("Line Sensor 0 value = ", val)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 58 of 213

thumbs_up_down

Print an output that looks something like "Sensor 0 reading = 325" where "325" is the value of line sensor 0.

Tools Found: Print Function, Keyword and Positional Arguments, str, int

Solution:

 1 from botcore import *
 2 while True:
 3 # Read line sensor 0
 4 val = ls.read(0)
 5
 6 # Display the sensor value to the Console
 7 print("Line Sensor 0 value = ", val)
 8

Objective 3 - Crossing the Line

What's the threshold between detected and NOT detected?

The line sensors provide an analog value with 4096 shades of contrast!

But your code must decisively detect a boundary line.
The line can be light or dark, but it will have different reflectivity than the background.
Your 'bot needs to know if it has hit the boundary line, True or False !

That's a boolean value you're looking for.

You have used comparison operators to make True / False decisions.
...usually with control flow like the if statement below.

threshold = 2500
if val < threshold:
 # Detected a reflection!

But you can also assign the boolean result of a comparison to a variable, as in the example here:

threshold = 2500
is_detected = val < threshold
leds.ls_num(0, is_detected)

is_detected is assigned the boolean result of the comparison.
...and the LED will turn On if is_detected is True.

Check the 'Trek!

Modify your code to turn on Line Sensor LEDs 0 when val is below a certain threshold.

You should have a good idea what the value of threshold should be, based on your prior observations!

Run It!

Test it by passing your finger below Line Sensor 0.

It's pretty cool to have a real-time control loop!
Could it detect a white line against a dark background?

CodeTrek:

 1 from botcore import *
 2
 3 threshold = # TODO: Set a threshold

Pick a number somewhere inbetween the reflectivity of your line
and your background.

Confused?

Python with Robots Mission Content

©2024 Firia Labs Appendix A 59 of 213

 4
 5 while True:
 6 val = ls.read(0)
 7 is_detected = val < threshold

 8 leds.ls_num(0, is_detected)

Goals:

Set the variable threshold to a number somewhere inbetween the reflectivity of your line and your background.

Set the variable is_detected to return True if val is less than threshold.

Call leds.ls_num(0, is_detected)

Tools Found: Line Sensors, Analog to Digital Conversion, bool, Comparison Operators, Branching, Variables, CodeBot LEDs

Solution:

 1 from botcore import *
 2
 3 threshold = 2000
 4
 5 while True:
 6 val = ls.read(0)
 7 is_detected = val < threshold #@2
 8 leds.ls_num(0, is_detected)

Objective 4 - (Fun)ctions

Take a look at the front edge of CodeBot - sensors on the bottom, LEDs on the top.

Those LEDs are positioned so you can use them to indicate Line Sensors
detection.

You have LS LED 0 working already.
The goal of this step is to invite the rest of the Line Sensors to your LED party!

You could achieve this without much thought by copying and pasting what you have, BUT...

Concept: Don't Repeat Yourself (DRY)

Here is ancient coding wisdom:

Never write the same code twice.

Okay, alright, a little repetition isn't awful, but if you find yourself typing the same code over and over, just think how much work
it will be to change it (or fix a bug in it) in the future.

Instead, let your programming tools (like functions) do the work!

Fear not!

Simply run the code from last objective and stick your finger under the line sensor.

My 'bot reads a value of 3859 when my finger is off the sensor,
and 229 when it's on the sensor.

So I would pick a threshold of 2000!

threshold = 2000

is_detected will return True if val is less than threshold.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 60 of 213

Challenge Accepted? Excellent!

Run It!

CodeTrek:

 1 from botcore import *
 2
 3 def detect_line(n):

 4 # TODO: Read line sensor value `n`
#@2
 5 is_detected = val < threshold
 6 # TODO: Set LS LED `n`

 7
 8 threshold = 2000
 9
10 while True:
11 detect_line(0)

Goals:

Define a function named detect_line and call it.

In the function detect_line:

Read the line sensor at index n.

In the function detect_line:

If the threshold is crossed, light the LS LED at index n.

Tools Found: Line Sensors, Functions, Locals and Globals, LED

Solution:

 1 from botcore import *
 2
 3 def detect_line(n):
 4 val = ls.read(n)
 5 is_detected = val < threshold
 6 leds.ls_num(n, is_detected)
 7
 8 threshold = 2000
 9
10 while True:
11 detect_line(0)

Objective 5 - Line Sensor Magic Lights!

Your next step is to scan all the sensors.

Aww yeah, your first function!

You can run this any time by calling it's name!

You'll want to light up the LED associated with the line sensor you're reading.

But remember, you're not reading sensor 0 anymore!

You'll need to supply the variable n as the LED index argument!

leds.ls_num(n, is_detected)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 61 of 213

Are you thinking something like this?

detect_line(0)
detect_line(1)
detect_line(2)
detect_line(3)
detect_line(4)

Not so fast!

That's a lot of repetition. Not very DRY!

You know how to make a loop to count from 0 to 4.
And you could package it in a new function.

Then you'd scan all the Line Sensors with one line of code!

After all, scanning the sensors is just one of the things your 'bot will be doing in the Fence Patrol project!

Check the 'Trek!

Write another function def scan_lines(): to:

Loop through all 5 line sensors.
Call detect_line(n) for each of them.

Click on the loop tool for a hint on making a loop to count from 0 to 4.

Now your code will have two functions defined.

Run It!

All your Line Sensor LEDs should be tracking the sensors below!

Can you see them track your finger as you pass it below the sensors?

CodeTrek:

 1 from botcore import *
 2
 3 def detect_line(n):
 4 val = ls.read(n)
 5 is_detected = val < threshold
 6 leds.ls_num(n, is_detected)
 7
 8 def scan_lines():

 9 # Loop across all Line Sensors and 'detect'
10 n = 0
11 while n < 5:

12 # TODO: Call detect_line

scan_lines() calls detect_line(n) for each
of the 5 line sensors.

Loop from 0 to 4!

You'll increment (add 1 to) n each repitition.
The while loop condition, n < 5, will be met after 5 repititions!

Each repitition of the loop, n will have a different value between 0 and 4.

Therefore, we need to supply n as the argument for detect_line!

detect_line(n)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 62 of 213

13 # TODO: Increment n

14
15 threshold = 2000
16
17 while True:
18 scan_lines()

19
20

Goals:

Define a function called scan_lines().

Use a while loop with the condition n < 5.

In the loop while n < 5:

Call detect_line(n)

Increment n by assigning n = n + 1

Call scan_lines()

Tools Found: Loops, Functions, Line Sensors, Keyword and Positional Arguments

Solution:

 1 from botcore import *
 2
 3 def detect_line(n):
 4 val = ls.read(n)
 5 is_detected = val < threshold
 6 leds.ls_num(n, is_detected)
 7
 8 def scan_lines():
 9 n = 0
10 while n < 5:
11 detect_line(n)
12 n = n + 1
13
14 threshold = 2000
15
16 while True:
17 scan_lines()
18
19

Quiz 1 - Checkpoint

Question 1: Using more reflective objects, or moving them nearer to the sensor makes the ls.read(0) values:

done Decrease

close Increase

close Stay the same

Add 1 to n every repitition.

n = n + 1

Call your new function!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 63 of 213

Question 2: How could you make your program detect a dark line against a light background?

done Use ">" instead of "<" in the comparison.

close Set "threshold" to a higher value

close Use a different LED function.

Question 3: What does the acronym DRY stand for?

done Dont Repeat Yourself

close Design Reference Year

close Defensive Rushing Yards

Objective 6 - Defensive Driving

Your sensors are tuned up and ready!

Now it's time to plan for adding motors into the fun.
The goal of this step is to develop the algorithm for your Fence Patrol robot.

You will need a small area to run your 'bot, with a boundary line that contrasts with
the surface.

Electrical Tape works well for making lines.

Before you get moving, check out these pro-tips -

Caution: Safe Driving!

Note 1: Nice robots wait before moving. It's very bad manners for a 'bot to jump right off your desk the instant you run the code.

Always include a loop waiting for a button press (or other human-initiated action) before moving.

Note 2: CodeBot safety-stop

If your code stops due to an error, or
You press Stop in CodeSpace,
→ CodeBot will disable the motors automatically!

Check the 'Trek!

Add code to Wait for the user to press BTN-0.

Insert the code at the top of your file, just after the import section:
Click on the Loops tool if you need a reminder of how to break out of a loop!
You already have a lot of experience using conditions and CodeBot Buttons.

Run It!

Make sure your Line Detect code doesn't run until you press BTN-0.

CodeTrek:

 1 from botcore import *
 2
 3 while True:
 4 # TODO: Break out if BTN-0 was pressed

Python with Robots Mission Content

©2024 Firia Labs Appendix A 64 of 213

 5
 6 def detect_line(n):
 7 val = ls.read(n)
 8 is_detected = val < threshold
 9 leds.ls_num(n, is_detected)
10
11 def scan_lines():
12 n = 0
13 while n < 5:
14 detect_line(n)
15 n = n + 1
16
17 threshold = 2000
18
19 while True:
20 scan_lines()
21
22

Goal:

Add a while loop at the beginning of your program that breaks when the user hits BTN- 0.

Tools Found: Motors, Loops, bool, Buttons

Solution:

 1 from botcore import *
 2
 3 while True:
 4 if buttons.was_pressed(0):
 5 break
 6
 7 def detect_line(n):
 8 val = ls.read(n)
 9 is_detected = val < threshold
10 leds.ls_num(n, is_detected)
11
12 def scan_lines():
13 n = 0
14 while n < 5:
15 detect_line(n)
16 n = n + 1
17
18 threshold = 2000
19
20 while True:
21 scan_lines()
22
23

Objective 7 - Driving in Bounds

Now to get your algorithm on!

So here's the Fence Patrol algorithm:

1. Scan the line sensors.
2. If any sensor detects a line, back up and turn.
3. Else if no line detected, drive forward.
4. Repeat forever, from step 1.

I hope you remember this from last mission!

Use buttons.was_pressed(0) to detect BTN-0 being pressed.

Use break to exit the while loop!

if buttons.was_pressed(0):
 break

Python with Robots Mission Content

©2024 Firia Labs Appendix A 65 of 213

Check the 'Trek!

You need to make a couple of changes to your code, so that when you "Scan the line sensors" you'll know if a line was HIT.

1. Modify your detect_line(n) function so that it returns a value: "Was a line detected or not?"
2. Modify your scan_lines() function so that it too returns a value: "Were ANY lines detected in this scan?"
3. To show that it's working, add a line_count global variable that you update in your main loop each time scan_lines()

returns True.

Display line_count in binary on the User LEDs.

Run It!

Are you satisfied that scan_lines() is properly reporting that CodeBot has hit a line?

Press BTN-0 to start the action.
Watch your USER LEDS to see the count.
What happens when a line is detected continuously?
Something interesting happens when line_count reaches 256!

CodeTrek:

 1 from botcore import *
 2
 3 while True:
 4 if buttons.was_pressed(0):
 5 break
 6
 7 def detect_line(n):
 8 val = ls.read(n)
 9 is_detected = val < threshold
10 leds.ls_num(n, is_detected)
11 # TODO: Return is_detected

12
13 def scan_lines():
14 # Loop across all Line Sensors and 'detect'.
15 # Return True if ANY line is detected!
16 got_line = False

detect_line(n) needs to be modified
to return a value that answers the question:

"Was a line detected or not?"

Simply return is_detected.

return is_detected

scan_lines() needs to be modified to answer the question:

"Were ANY lines detected in this scan?"

Use got_line to keep track of whether any
detect_line(n) call returns True.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 66 of 213

17 n_sens = 0
18 while n_sens < 5:
19 # Use the return value of detect_line()
20 if detect_line(n_sens):
21 got_line = True

22
23 n_sens = n_sens + 1
24
25 # Always return True or False.
26 return got_line

27
28 threshold = 2000
29 line_count = 0

30
31 while True:
32 hit = scan_lines()

33
34 if hit:
35 # Update count and display on User LEDs
36 line_count = line_count + 1
37 leds.user(line_count)

38
39
40

Goals:

Return is_detected from the detect_line(n) function.

Return got_line from the scan_lines() function.

Call leds.user(line_count).

Tools Found: Parameters, Arguments, and Returns, Locals and Globals, Binary Numbers, Functions, Variables, Line Sensors, CodeBot LEDs

Solution:

 1 from botcore import *
 2

got_line will be returned at the end of
the function!

We got one!

When a line is detected, update got_line to True!

Don't forget to return got_line!

Initialize a new variable line_count.

It's used to keep track of how many times scan_lines() returns True.

Now, scan_lines() returns True
if a line was detected on any of
the 5 line sensors.

When a line is hit, update line_count and display
the new total on the user LEDs!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 67 of 213

 3 while True:
 4 if buttons.was_pressed(0):
 5 break
 6
 7 def detect_line(n):
 8 val = ls.read(n)
 9 is_detected = val < threshold
10 leds.ls_num(n, is_detected)
11 return is_detected
12
13 def scan_lines():
14 # Loop across all Line Sensors and 'detect'.
15 # Return True if ANY line is detected!
16 got_line = False
17 n_sens = 0
18 while n_sens < 5:
19 # Use the return value of detect_line()
20 if detect_line(n_sens):
21 got_line = True
22
23 n_sens = n_sens + 1
24
25 # Always return True or False.
26 return got_line
27
28 threshold = 2000
29 line_count = 0
30
31 while True:
32 hit = scan_lines()
33
34 if hit:
35 # Update count and display on User LEDs
36 line_count = line_count + 1
37 leds.user(line_count)
38
39

Objective 8 - Flicker Begone!

Bugs Ahead
Is it just me, or are your User LEDs flickering like crazy too?

They are actually counting up in binary.
After the count reaches 0b11111111 (255)... BOOM!

See below for a suggested fix for this bug.

Check the 'Trek!

Change your code to fix the ValueError bug.

When line_count reaches 256, set it back to 0b00000000 (0).
It will resume counting up from the zero!

Run It!

Make sure you see the counter wrap around to zero and count up from there.
In the next step you'll slow the count down.

Be sure to verify that no matter which Line Sensor detects the line, you see User LEDs counting up.

CodeTrek:

 1 from botcore import *
 2
 3 while True:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 68 of 213

 4 if buttons.was_pressed(0):
 5 break
 6
 7 def detect_line(n):
 8 val = ls.read(n)
 9 is_detected = val < threshold
10 leds.ls_num(n, is_detected)
11 return is_detected
12
13 def scan_lines():
14 # Loop across all Line Sensors and 'detect'.
15 # Return True if ANY line is detected!
16 got_line = False
17 n_sens = 0
18 while n_sens < 5:
19 # Use the return value of detect_line()
20 if detect_line(n_sens):
21 got_line = True
22
23 n_sens = n_sens + 1
24
25 # Always return True or False.
26 return got_line
27
28 threshold = 2000
29 line_count = 0
30
31 while True:
32 hit = scan_lines()
33
34 if hit:
35 # Update count and display on User LEDs
36 line_count = line_count + 1
37 # TODO: When line_count reaches 256, set it to 0

38 leds.user(line_count)
39
40

Goal:

When line_count == 256, set it to 0.

Tools Found: Binary Numbers

Solution:

 1 from botcore import *
 2
 3 while True:
 4 if buttons.was_pressed(0):
 5 break
 6
 7 def detect_line(n):
 8 val = ls.read(n)
 9 is_detected = val < threshold
10 leds.ls_num(n, is_detected)
11 return is_detected
12
13 def scan_lines():
14 # Loop across all Line Sensors and 'detect'.
15 # Return True if ANY line is detected!
16 got_line = False
17 n_sens = 0
18 while n_sens < 5:

To prevent another error, if line_count is 256,
set it to 0!

if line_count == 256:
 line_count = 0

Python with Robots Mission Content

©2024 Firia Labs Appendix A 69 of 213

19 # Use the return value of detect_line()
20 if detect_line(n_sens):
21 got_line = True
22
23 n_sens = n_sens + 1
24
25 # Always return True or False.
26 return got_line
27
28 threshold = 2000
29 line_count = 0
30
31 while True:
32 hit = scan_lines()
33
34 if hit:
35 # Update count and display on User LEDs
36 line_count = line_count + 1
37 if line_count == 256:
38 line_count = 0
39 leds.user(line_count)
40

Objective 9 - Fence Patrol v1.0

Ready to Motor Up?

You've designed your algorithm.
You have a "Wait for button-press" safety feature.
And your sensor code has been fully tested.

All systems are go!

Caution

Be sure your threshold calculation is set for your line type.

Dark line on light surface (as shown above): is_detected = val > threshold
Light line on dark surface: is_detected = val < threshold

Reviewing your algorithm:

1. Scan the line sensors.
2. If any sensor detects a line, back up and turn.
3. Else if no line detected, drive forward.
4. Repeat forever, from step 1.

Final Steps:

Add two new functions to drive the motors:
go_forward() and back_turn().

Call those functions from your main while True: loop.
Based on the return value of scan_lines() of course!

Check the 'Trek!

You already know how to run the motors. Take a look back at your Time and Motion mission code if you need a refresher!

Be sure to enable the motors before your main loop.
Remember to do from time import sleep so you can delay while backing up and turning.
Use at most 50% motor power to begin with!

Run It!

You need batteries loaded for this!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 70 of 213

Place your 'bot inside the boundary and press BTN-0.
Is CodeBot staying in-bounds?
Hey - With the delay in back_turn() you can read the line count on the User LEDs!

Try Your Skills: Customize your Code

Any mods you'd like to try?

Your initial guess at the speeds and delays in back_turn() could probably use some adjustment to make your bot cover
more ground.
Are you feeling the need for speed?

How high can your go_forward() function set the motor power to? Can you go 100% full-throttle and still read
sensors fast enough to stay in-bounds?
Note: You'll need to increase the braking power also! ...Watch those wheels spin-out when you back_turn()!

Enjoy!

CodeTrek:

 1 from botcore import *
 2 from time import sleep
 3
 4 while True:
 5 if buttons.was_pressed(0):
 6 break
 7
 8 def go_forward():
 9 # Start driving forward (no delay/stop needed)
10 # TODO: code to run both motors at same (+) speed

11
12 def back_turn():
13 # Back up a bit and turn around
14 # TODO: code the following steps -
15 # 1. Run both motors at same (-) speed (reverse).
16 # 2. Sleep for a bit, backing up.
17 # 3. Run motors in opposite directions.
18 # 4. Sleep for a bit, rotating.

19
20 def detect_line(n):
21 val = ls.read(n)
22 is_detected = val < threshold
23 leds.ls_num(n, is_detected)
24 return is_detected
25
26 def scan_lines():
27 # Loop across all Line Sensors and 'detect'.
28 # Return True if ANY line is detected!
29 got_line = False
30 n_sens = 0
31 while n_sens < 5:
32 # Use the return value of detect_line()
33 if detect_line(n_sens):
34 got_line = True
35
36 n_sens = n_sens + 1
37
38 # Always return True or False.
39 return got_line
40
41 threshold = 2000

Don't be afraid!

You've already mastered each of the 4
steps here in the Time and Motion mission!

If you get stuck, review your old code!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 71 of 213

42 line_count = 0
43
44 # Enable the motors
45 motors.enable(True)
46
47 while True:
48 hit = scan_lines()
49
50 if hit:
51 back_turn()

52
53 # Update count and display on User LEDs
54 line_count = line_count + 1
55 if line_count == 256:
56 line_count = 0
57 leds.user(line_count)
58 else:
59 go_forward()

60

Goals:

Define go_forward and back_turn functions.

When scan_lines hits, call back_turn().

When scan_lines does NOT hit, call go_forward().

Tools Found: Motors, Line Sensors, Functions

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 while True:
 5 if buttons.was_pressed(0):
 6 break
 7
 8 def go_forward():
 9 # Start driving forward (no delay/stop needed)
10 motors.run(LEFT, 50)
11 motors.run(RIGHT, 50)
12
13 def back_turn():
14 # Back up a bit and turn around
15 motors.run(LEFT, -50)
16 motors.run(RIGHT, -50)
17 sleep(0.1)
18 motors.run(LEFT, -50)
19 motors.run(RIGHT, 50)
20 sleep(0.1)
21
22 def detect_line(n):
23 val = ls.read(n)
24 is_detected = val < threshold
25 leds.ls_num(n, is_detected)
26 return is_detected
27
28 def scan_lines():
29 # Loop across all Line Sensors and 'detect'.
30 # Return True if ANY line is detected!

if scan_lines hits a line, call your new function back_turn!

if scan_lines does not find a line, call your new
go_forward function!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 72 of 213

31 got_line = False
32 n_sens = 0
33 while n_sens < 5:
34 # Use the return value of detect_line()
35 if detect_line(n_sens):
36 got_line = True
37
38 n_sens = n_sens + 1
39
40 # Always return True or False.
41 return got_line
42
43 threshold = 2000
44 line_count = 0
45
46 # Enable the motors
47 motors.enable(True)
48
49 while True:
50 hit = scan_lines()
51
52 if hit:
53 back_turn() #@1
54
55 # Update count and display on User LEDs
56 line_count = line_count + 1
57 if line_count == 256:
58 line_count = 0
59 leds.user(line_count)
60 else:
61 go_forward() #@3
62

Mission 5 Complete

This project has covered a lot of ground.

Analog sensors - you've mastered a classic non-contact sensor, used
in many Industrial and Commercial products!
Using threshold comparison operations to make decisions with
sensor data.
Working with the Debug Console, including a powerful way to experiment
with sensor values using Python's print() statement.
Building safety features into your products, so they don't surprise the
user (or worse!) on startup.
AND you have now built a truly autonomous robot.

Your 'bot makes decisions and takes action based on perception.
It's sensing its environment, not just running a pre-programmed
sequence or being remote-controlled!

Code like this impacts your life every day!

Automatic Guided Vehicles (AGVs) use this kind of code to zoom around warehouse distribution centers, getting packages to you!
Robots are used to clean up environmental waste, explore underground mines, and discover shipwrecks in the deepest oceans.
Maybe you will invent the next amazing application of this technology!

Try Your Skills

Python with Robots Mission Content

©2024 Firia Labs Appendix A 73 of 213

Mission 6 - Line Follower
Follow the Road!

Self-driving cars, autonomous flying drones, and other computing systems that
navigate on their own have some basic principles in common.

Whether you are writing code for a vehicle with a high-powered vision
processing system or for CodeBot's efficient low-power sensors, you'll face
many of the same challenges to achieve the objective:

Based on sensor inputs, what actions should you take to stay on the
path?

In this project you will build and refine a Line Following Robot.

Line Followers are a staple of Robotics competitions, used in challenges
such as:

Races - which robot can make the best time navigating a curvy track?
Mazes - A maze of lines is laid out on a table or floor.

Your 'bot has one run through to "learn" the maze, and a second run to solve it at high speed!

But even basic line followers aren't just for competitions!

Robots that zip through warehouse distribution centers often follow lines as they pick and pack items you order when shopping
online!

Project Goals:

Create a basic line follower using 2 edge sensors.
Improve the design with a center-line sensor to keep it straight.
Use all 5 line sensors for proportional steering control.
Adapt to your environment with Line Calibration code.

Objective 1 - Speedy Sensing!

Your line follower 'bot will need to continuously check for the presence of a
line beneath all 5 sensors.

You already know how to read the line sensors with ls.read(n).
And you can compare against a threshold value to get a bool status:
is_detected.

That's what your detect_line(n) function did in the last project!

But now you need to write code that runs the following sequence:

1. Detect lines on all 5 sensors → store the is_detected value for each line.
2. Decide how to steer based on the bool values you stored.
3. Repeat!

In step 1 of the above algorithm you need to store the values, since step 2
will need them for comparison and control flow. Checking the sensors just
once per loop is key if you want your 'bot to be Fast!

Reading the line sensors takes time, and if your control loop is too slow then your 'bot will have to slow down to stay on
track.

Here's some code that could work: (don't type this in):

Read all the sensors one time
line0 = detect_line(0)
line1 = detect_line(1)
line2 = detect_line(2)
line3 = detect_line(3)
line4 = detect_line(4)

Use line values to steer the bot
TODO: ...

Python with Robots Mission Content

©2024 Firia Labs Appendix A 74 of 213

The code above has a lot of repetition right?

It sure would be nice if there was a better way to deal with lists of things...

Concept: list

A list is a sequence of items you can access with an index.

Click on the list tool to learn more details.

Example:

Create a list of musical frequencies
song = [392, 440, 349, 175, 262]
spkr.pitch(song[0]) # Play the first pitch in the list

Remember:

Use square brackets [] to create a list
Access items by their index (an integer in brackets).
The first index is zero, not one!

Make a fast function

With lists in your toolbox, you can make a function that checks the line sensors and returns is_detected for all of them.

Create a New File!

Debug

Step through your code with the debugger, and make sure it works as expected.

Is your line being detected?

Notice that the list is displayed by index 0,1,2,3,4.
But the line sensors are numbered 4,3,2,1,0.

Don't worry: detected[0] is line sensor 0
The picture above shows how they line up.

CodeTrek:

 1 from botcore import *
 2
 3 def check_lines(thresh):
 4 # Create a list for 5 sensors,
 5 # initialize to False: "not detected".
 6 detected = [False, False, False, False, False]

 7
 8 n_sens = 0
 9 while n_sens < 5:

10 val = ls.read(n_sens)

Your first list!

Each item in the list represents the threshold to sensor reading comparison
for each line sensor.

Look familiar?

This section of the code is just like your scan_lines() function
from last mission!

If you've forgotten, go back and check it out!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 75 of 213

11 # Compare sensor reading to threshold
12 if val < thresh:
13 # Line detected!
14 # TODO: Set this indexed item in list to True.

15 n_sens = n_sens + 1
16
17 # Return the list
18 return detected
19
20 # Test: call the function
21 vals = check_lines(2500)

Goals:

Define a function named check_lines().

Create a list named detected.

Update an item in the detected list by indexing it.

bug_reportDEBUG your program and use the STEP IN button.

Tools Found: bool, Comparison Operators, Branching, list, int, Functions, Line Sensors

Solution:

 1 from botcore import *
 2
 3 def check_lines(thresh):
 4 # Create a list for 5 sensors,
 5 # initialize to False: "not detected".
 6 detected = [False, False, False, False, False] #@1
 7
 8 n_sens = 0
 9 while n_sens < 5: #@2
10 val = ls.read(n_sens)
11 # Compare sensor reading to threshold
12 if val < thresh:
13 # Line detected!
14 detected[n_sens] = True
15 n_sens = n_sens + 1
16
17 # Return the list
18 return detected
19
20 # Test: call the function
21 vals = check_lines(2500)

Objective 2 - Using the REPL

Run the code from the previous step!

It doesn't do much right now...

The program ends quickly, since it only calls check_lines(2500) one time.
But wait, there's more to the story...

Although your program has ended, CodeBot can still accept commands!

When a line is detected, update the detected list!

Each item in the detected list corresponds with a line sensor.

If sensor 0 is True, item 0 needs to be True as well!

To update a specific value in a list, access the item by it's index!

detected[n_sens] = True

Python with Robots Mission Content

©2024 Firia Labs Appendix A 76 of 213

You have used the Debug Console to print() values. Now you'll be using its most powerful feature:

The REPL (Read Evaluate Print Loop) lets you interact with CodeBot's Python environment.

Try this!

Click the menu button at the lower-right to open the console panel.
Click in the Debug Console panel, where you see the >>> prompts.

If you press Enter on your keyboard you'll see a new >>> prompt. You can type any valid Python statement here. It's a great way to
test out snippets of code!

Concept: CB2 vs CB3 REPL Difference

The REPL works a little differently on the CodeBot model CB2 vs the CodeBot model CB3.

On the CB2 your program state remains after your code finishes.
You can still call any local functions or access any local variables from your program.

On the CB3 your program state is cleared when your code finishes.
You must import modules to use them, like from botcore import *
You can also import your program using the module name main.

Give it a try!

Try Your Skills: Experiment with the REPL

Hint:

Run into an ImportError?

Fear not!

Usually this can be fixed by re-running the code from the previous objective.

Good luck!

Goal:

Run the check_lines() function in the REPL.

CodeBot CB3 users need to call from main import check_lines first!

Tools Found: import, Parameters, Arguments, and Returns, Functions, CodeBot LEDs

Solution:

N/A

Quiz 1 - Check My Lines?

You're packing a lot of Python knowledge!

Hopefully you can help clear a few things up about this program :-)

Here's what happened when I ran my check_lines() code in the debugger:

Note: My 'bot is positioned on a black line against a white background as shown.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 77 of 213

An obvious problem above is that the detected values are inverted.
Each value is the opposite of what it should be for my black line.

Please answer the following questions based on the program at the point shown in the LOCAL VARIABLES panel above:

Question 1: What is the value of detected[0]?

done True

close False

close 0

close 1

Question 2: What is the value of detected[n_sens]?

done True

close False

close 0

close 1

Question 3: Assume you continued stepping through this program...

What value would n_sens have when the program reaches the return statement after the loop?

done 5

close 4

close 0

close [False, True, True, False, False]

Question 4: Only sensors 1 and 2 are on the black line.

The bool values are inverted!
You need to modify the code so that:

detected[1] and detected[2] are True.
...the rest are False

With this modification the detected list would be:

[False, True, True, False, False]

Which of the following is a way you could modify the code to achieve that?

done Change comparison to if val > thresh:

close Pass-in a lower value for thresh, like check_lines(150)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 78 of 213

close Change comparison to while n_sens > 5:

Objective 3 - Magic Lights Redux

Check the 'Trek!

Run It!

Take your new Magic Lights for a spin!

Your loop is really simple now.
That's good! Now you can work with the whole group of sensors together.

Now that you know how to deal with sensor values in lists, you're ready to unlock some of CodeBot's more powerful APIs.

And you can keep your algorithms nice and tidy, like the loop above!

CodeTrek:

 1 from botcore import *
 2
 3 def check_lines(thresh):
 4 # Create a list for 5 sensors,
 5 # initialize to False: "not detected".
 6 detected = [False, False, False, False, False]
 7
 8 n_sens = 0
 9 while n_sens < 5:
10 val = ls.read(n_sens)
11 # Compare sensor reading to threshold
12 if val < thresh:
13 # Line detected!
14 # Set this indexed item in list to True.
15 detected[n_sens] = True
16 n_sens = n_sens + 1
17
18 # Return the list
19 return detected
20
21
22 while True:
23 # TODO: Check the line sensors.

24 # TODO: Set LS LEDs with detected vals.

25
26

Goals:

Assign the output of check_lines(threshold) to the variable vals.

Use the variable vals as the input to leds.ls(vals).

Simply call your function check_lines() and assign the output to a variable!

We'll use the value of the variable to light the LEDs in the next line!

Don't forget to supply check_lines() with a threshold argument (in my case I'm using 2500)!

vals = check_lines(threshold)

Here's where the magic happens!

Use the variable assigned on the line above as an argument to leds.ls().

leds.ls(vals)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 79 of 213

Tools Found: CodeBot LEDs, list, bool, Binary Numbers, Loops, Variables, LED

Solution:

 1 from botcore import *
 2
 3 def check_lines(thresh):
 4 # Create a list for 5 sensors,
 5 # initialize to False: "not detected".
 6 detected = [False, False, False, False, False]
 7
 8 n_sens = 0
 9 while n_sens < 5:
10 val = ls.read(n_sens)
11 # Compare sensor reading to threshold
12 if val < thresh:
13 # Line detected!
14 # Set this indexed item in list to True.
15 detected[n_sens] = True
16 n_sens = n_sens + 1
17
18 # Return the list
19 return detected
20
21
22 while True:
23 vals = check_lines(2500)
24 leds.ls(vals)
25
26

Objective 4 - Down to the Metal!

Oh, just one more thing before you start writing actual Line Follower code.

Seriously, I'm not just stalling here... You're gonna want this!
The diagram to the right shows a portion of the ADC hardware inside
CodeBot's CPU.
That hardware can be configured to scan multiple inputs fast!

...Way faster than your check_lines() code can possibly run.

Taking check_lines() to the hardware level

Can you write Python code to directly access all that sophisticated hardware
ADC power?

Yes! ...but that's for a more advanced course.
Writing code that controls hardware directly is called "programming down to the metal". You are doing quite a lot of that
already!
Fortunately the botcore library provides some pre-coded functions for the Line Sensors that take advantage of all that ADC
hardware.

Concept: ls.check()

This botcore Line Sensors function is very similar to the check_lines() function you have just developed.

Usage Example:

from botcore import *

thresh = 2500 # Set threshold
is_reflective = False # Set for black line

Check line sensors and return bools
vals = ls.check(thresh, is_reflective)

leds.ls(vals)

As you can see from the code above, ls.check() can easily replace your check_lines() function.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 80 of 213

How is it different?

It has a second parameter is_reflective that controls whether "detected" means the sensor is > thresh or < thresh.
It returns a tuple rather than a list.

A tuple is basically a read-only form of list.
It's screaming fast since it uses the ADC hardware channel scanning feature.
Due to the sampling method used, the ADC value will be different than ls.read().

That means you need to calculate a new thresh value!
You can get a tuple of the raw ADC values:

Use zero for the threshold value, ls.check(0). (no 2nd argument needed)

Once more to the REPL

A quick way to find the right threshold value for your Line Follower is to enter ls.check(0) on the REPL.

After you see the range of raw values for your line/ground areas, you can test it out with ls.check(thresh, is_reflective).

Try Your Skills: Debug Console

Open the Debug Console and experiment to find the thresh value that works well with ls.check().

Notes:

If code is already running you will need to press the ■ Stop button first!
The running code already did from botcore import * so you have access to ls.check() from the REPL.

If you did not have code already loaded, you'd need to type from botcore import * on the REPL to bring it in!

Pro-Tip: Press ↑ Up-Arrow to recall a prior command. Save some typing!

Create a New File!

Use the File → New File menu to create a new file called LineFollow1.

Check the 'Trek!

Yes, this is finally the start of something that moves!
Your first step is to code the most magical version yet of Magic Lights.

Now that you have ls.check(thresh, is_reflective) and leds.ls(vals) this should be a pretty short program!

The algorithm is exactly the same as your previous step

Run It!

Surprise!

Okay, maybe it appears the same to the casual observer...
But now you're rolling with the metal!

CodeTrek:

 1 from botcore import *
 2
 3 thresh = 2500 # Set threshold
 4 is_reflective = False # Set for black line
 5
 6 while True:
 7 # TODO: Check the line sensors

Use the new ls.check() function to set the variable vals this time!

vals = ls.check(thresh, is_reflective)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 81 of 213

 8 leds.ls(vals)
 9
10

Goal:

Assign the output of ls.check(thresh, is_refective) to the variable vals.

Tools
Found:

Analog to Digital Conversion, CPU and Peripherals, Line Sensors, Parameters, Arguments, and Returns, tuple, list, Variables,
Functions

Solution:

 1 from botcore import *
 2
 3 thresh = 2500 # Set threshold
 4 is_reflective = False # Set for black line
 5
 6 while True:
 7 vals = ls.check(thresh, is_reflective)
 8 leds.ls(vals)
 9
10

Objective 5 - Between the Edges

Your first line following algorithm will be simple:

Use only two sensors: LEFT (0) and RIGHT (4).
Start your bot "straddling" the line.
Move forward until a LEFT or RIGHT sensor is hit.
Turn to get back on track!

Hit LEFT sensor: turn LEFT
Hit RIGHT sensor: turn RIGHT

Your already have a loop checking the line sensors. Just a few more lines of
code to control the motors and you'll have your first line follower!

Check the 'Trek!

Modify your code to do the following:

Algorithm:

1. Wait for BTN-0 press before enabling motors.
2. Check line sensors with vals = ls.check(thresh, is_reflective).
3. Show sensor vals on Line Sensor LEDs.
4. If left edge is hit, turn LEFT.
5. If right edge is hit, turn RIGHT.
6. Otherwise go straight ahead!
7. Repeat from step 2.

Be sure to make your SPEED easy to adjust. (use a variable)

Run It!

Try this code on a few different line courses. Start with a low speed before you turn up the power.

Experiment with Line Types:

At a low speed, try different turn angles and curves.
How does it handle a gap in the line?
What about a crossroad?

Python with Robots Mission Content

©2024 Firia Labs Appendix A 82 of 213

Experiment with your Code:

Try increasing the SPEED.
Change the Turn code.

If your course has gentle curves then one wheel can just be a little slower than the other.
But if you have tight turns then one wheel may need to spin backwards. (negative 'speed' number)

Not too bad!

Your 'bot can navigate some pretty twisty roads...
Even with a very simple algorithm and only two sensors!

But it has limitations too. Imagine this is a "package delivery robot" inside a factory...

There are sharp turns in some places, and this 'bot gets lost!
It's too slow - why can't it go much faster when the path is straight?

Concept: Take Note

Test your Line Follower and make some notes:

What situations does this algorithm handle nicely?
What situations make it fail?
Why does it fail in those cases?

CodeTrek:

 1 from botcore import *
 2
 3 # Wait for BTN-0 before moving
 4 while True:
 5 if buttons.was_pressed(0):
 6 break

 7
 8 motors.enable(True)
 9
10 # Set speed in one place so you can change it easily
11 SPEED = 30
12
13 while True:
14 # Check line sensors: set for black line
15 vals = ls.check(2500, False)
16
17 # Show results on LS LEDs
18 leds.ls(vals)
19
20 # Keep the line between the edges
21 if vals[0]:
22 # Left edge. Turn left.
23 motors.run(LEFT, 0)
24 motors.run(RIGHT, SPEED)

25 elif vals[4]:
26 # Right edge. Turn right.
27 motors.run(LEFT, SPEED)
28 motors.run(RIGHT, 0)

Waiting for BTN-0 press is good practice when your 'bot is about to move!

It prevents any unexpected cable pulls!

If line sensor 0 detects the threshold was crossed,
turn LEFT into the line!

If line sensor 4 detects the threshold was crossed,

Python with Robots Mission Content

©2024 Firia Labs Appendix A 83 of 213

29 else:
30 # TODO: Go straight

31

Goals:

Wait for BTN-0 press before enabling motors.

Using an if-elif-else condition:

If the LEFT sensor isn't triggered
and if the RIGHT sensor isn't triggered

then drive forward.

Tools Found: Line Sensors, Motors, Variables, bool

Solution:

 1 from botcore import *
 2
 3 # Wait for BTN-0 before moving
 4 while True:
 5 if buttons.was_pressed(0):
 6 break
 7
 8 motors.enable(True)
 9
10 # Set speed in one place so you can change it easily
11 SPEED = 30
12
13 while True:
14 # Check line sensors: set for black line
15 vals = ls.check(2500, False)
16
17 # Show results on LS LEDs
18 leds.ls(vals)
19
20 # Keep the line between the edges
21 if vals[0]:
22 # Left edge. Turn left.
23 motors.run(LEFT, 0)
24 motors.run(RIGHT, SPEED)
25 elif vals[4]:
26 # Right edge. Turn right.
27 motors.run(LEFT, SPEED)
28 motors.run(RIGHT, 0)
29 else:
30 # Go straight.
31 motors.run(LEFT, SPEED)
32 motors.run(RIGHT, SPEED)
33

Objective 6 - Increased Reliability and Speed

You can make your Line Follower faster and better at tracking lines with some small changes to your code.

First thing to focus on is where your algorithm is failing...
It seems like the 'bot sometimes fails to detect the line, but that's not the case!
If you observe closely just before it loses the path:

The LEDs show that your bot does detect the line.

turn RIGHT into the line!

If the threshold hasn't been crossed on either of the outer line sensors,
the line is still under your CodeBot! Keep going forward!

motors.run(LEFT, SPEED)
motors.run(RIGHT, SPEED)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 84 of 213

So it must at least start to turn...

What if your 'bot overshoots the line?

If it departs the line, it's back to "Go Straight" code!
That means even the slightest overshoot sends CodeBot off on a tangent.

How would you fix this?

One possibility is to try to turn harder.

But it takes time for the motors to change CodeBot's direction.
If the 'bot is going fast and the turn is sharp, the motors may not be able to
overcome its momentum quickly enough to prevent overshooting the line.

A better fix is to keep turning when the line is lost!

That means you only "Go Straight if you're sure you are centered on the line.
Use the middle three line sensors to confirm you are on the line.

Check the 'Trek!

Modify your code so that the else becomes an elif and you only "Go Straight" if one or more of them is True.

Test for elif vals[1] or vals[2] or vals[3]:.

Check out the Logical Operators for background on or.

Run It!

Test your Line Follower!

Check out the cases where it failed before.
Try increasing the SPEED.

Tune Your Turns

Based on the layout of your line course you can modify your code to change the amount your 'bot turns when it sees the edge of the
line.

Remember you can also make one wheel go backwards if you have tight turns.

This code can really move out!

CodeTrek:

 1 from botcore import *
 2
 3 # Wait for BTN-0 before moving
 4 while True:
 5 if buttons.was_pressed(0):
 6 break
 7
 8 motors.enable(True)
 9
10 # Set speed in one place so you can change it easily
11 SPEED = 30
12
13 while True:
14 # Check line sensors: set for black line
15 vals = ls.check(2500, False)
16
17 # Show results on LS LEDs
18 leds.ls(vals)
19
20 # Keep the line between the edges
21 if vals[0]:
22 # Left edge. Turn left.
23 motors.run(LEFT, 0)
24 motors.run(RIGHT, SPEED)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 85 of 213

25 elif vals[4]:
26 # Right edge. Turn right.
27 motors.run(LEFT, SPEED)
28 motors.run(RIGHT, 0)
29 else: # TODO: Update this 'else' to an 'elif'

30 # Go straight.
31 motors.run(LEFT, SPEED)
32 motors.run(RIGHT, SPEED)
33

Goal:

Modify your code so that the else becomes an elif and you only "Go Straight" if ANY of the middle three line sensors are True.

The middle three sensors are vals[1], vals[2], and vals[3].

Tools Found: Logical Operators, Line Sensors

Solution:

 1 from botcore import *
 2
 3 # Wait for BTN-0 before moving
 4 while True:
 5 if buttons.was_pressed(0):
 6 break
 7
 8 motors.enable(True)
 9
10 # Set speed in one place so you can change it easily
11 SPEED = 30
12
13 while True:
14 # Check line sensors: set for black line
15 vals = ls.check(2500, False)
16
17 # Show results on LS LEDs
18 leds.ls(vals)
19
20 # Keep the line between the edges
21 if vals[0]:
22 # Left edge. Turn left.
23 motors.run(LEFT, 0)
24 motors.run(RIGHT, SPEED)
25 elif vals[4]:
26 # Right edge. Turn right.
27 motors.run(LEFT, SPEED)
28 motors.run(RIGHT, 0)
29 elif vals[1] or vals[2] or vals[3]:
30 # Go straight.
31 motors.run(LEFT, SPEED)
32 motors.run(RIGHT, SPEED)
33

Objective 7 - Proportional Control

Use the line sensors for smarter turning control so your 'bot can go full speed ahead!

A weakness of your Line Following code is that it always uses the same turning force.

If you have some not too curvy sections, you'd rather it turn gently.
But if you have sharp bends, you need it to turn hard!

If neither val[0] or val[1] has crossed the treshold,
go straight only if the line is beneath line sensors 1, 2, and 3!

Replace else: with:

elif vals[1] or vals[2] or vals[3]:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 86 of 213

Instead of always using the same turning force, can you make the turn proportional to how
far off-center CodeBot is?

With 5 sensors you can detect much more than just a Left or Right edge.

How many "steps" off-center can you detect?
...it depends on the width of your line!

Try Your Skills: Collect Data

Run your last program, and make notes of the Line Sensor LEDs as you pass your 'bot Left and Right across the line.

Find every detected position by slowly moving your 'bot Left and Right.

Lift the wheels slightly off the surface while you do this test. Or comment-out the # motors.enable() so you can
observe the LEDs without motors running.

Example: My Collected Data

Using standard 3/4" black electrical tape on a white surface, I got the following:

Your data may be different - run your own experiments and find out!

Line Pos LEDs (vals)
Far Left vals == (True, False, False, False, False)

vals == (True, True, False, False, False)
vals == (False, True, False, False, False)
vals == (False, True, True, False, False)

Center vals == (False, False, True, False, False)
vals == (False, False, True, True, False)
vals == (False, False, False, True, False)
vals == (False, False, False, True, True)

Far Right vals == (False, False, False, False, True)

As the table above shows, I can detect 4 steps of off-center in both Left and Right directions.

Check the 'Trek!

There are two significant changes to your code:

1. In your if statement:, instead of comparing indexed values like: vals[0] or vals[1], compare tuples with code like:
if vals == (0,1,1,0,0):

Yes! A comparison on the whole sequence all at once!
Note: You can use 0 and 1 rather than False and True to save typing!

2. Instead of calling motors.run() for LEFT and RIGHT motors at every different line position, define a function
drive(left, right) to do it in one line of code plus add a SPEED_LIMIT.

Use the code in the CodeTrek as a guide, but make it your own!

Run It!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 87 of 213

Take your new version for a test drive!

How well does it navigate gently turning sections?
Can it handle the sharp turns?

You will probably want to do some more adjustments to make this version work in all your test scenarios!

CodeTrek:

 1 from botcore import *
 2
 3 # Wait for BTN-0 before moving
 4 while True:
 5 if buttons.was_pressed(0):
 6 break
 7
 8 motors.enable(True)
 9
10 # Speed limit. Max speed = 1.0, 50% is 0.5, etc.
11 SPEED_LIMIT = 0.8
12
13 def drive(left, right):
14 # Apply -100 to 100 power to motors, enforcing SPEED_LIMIT.
15 motors.run(LEFT, left * SPEED_LIMIT)
16 motors.run(RIGHT, right * SPEED_LIMIT)

17
18 while True:
19 vals = ls.check(2500, False)
20 leds.ls(vals)
21
22 # Drive based on sensor readings.
23 if vals == (1,0,0,0,0): # Far Left
24 drive(-20, 50)

25 elif vals == (1,1,0,0,0):
26 drive(0, 60)
27 elif vals == (0,1,0,0,0):
28 drive(40, 80)
29 elif vals == (0,1,1,0,0):
30 drive(80, 100)
31 elif vals == (0,0,1,0,0): # Center
32 drive(100, 100)
33
34 elif vals == (0,0,1,1,0):
35 drive(100, 80)
36 elif vals == (0,0,0,1,0):
37 drive(80, 40)
38 elif vals == (0,0,0,1,1):
39 drive(60, 0)
40 elif # TODO: If the right sensor only is True

41 drive(50, -20)

Goals:

Your new drive() function takes the LEFT and RIGHT motor speed as arguments.

Implementing a SPEED_LIMIT variable will allow you to alter the MAX speed
easily during testing.

if ONLY the LEFT line sensor is triggered, then turn LEFT!

Use a tuple here! If ONLY the LEFT sensor is triggered, your tuple will look like this:

(0,0,0,0,1)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 88 of 213

Using a tuple in the if statement, drive RIGHT when only the rightmost line sensor is triggered.

Define a new function named drive() that drives BOTH the LEFT and RIGHT motors.

Tools Found: Line Sensors, CodeBot LEDs, Comments, tuple, Comparison Operators, Functions, Keyword and Positional Arguments, Variables

Solution:

 1 from botcore import *
 2
 3 # Wait for BTN-0 before moving
 4 while True:
 5 if buttons.was_pressed(0):
 6 break
 7
 8 motors.enable(True)
 9
10 # Speed limit. Max speed = 1.0, 50% is 0.5, etc.
11 SPEED_LIMIT = 0.8
12
13 def drive(left, right):
14 # Apply -100 to 100 power to motors, enforcing SPEED_LIMIT.
15 motors.run(LEFT, left * SPEED_LIMIT)
16 motors.run(RIGHT, right * SPEED_LIMIT)
17
18 while True:
19 vals = ls.check(2500, False)
20 leds.ls(vals)
21
22 # Drive based on sensor readings.
23 if vals == (1,0,0,0,0): # Far Left
24 drive(-20, 50)
25 elif vals == (1,1,0,0,0):
26 drive(0, 60)
27 elif vals == (0,1,0,0,0):
28 drive(40, 80)
29 elif vals == (0,1,1,0,0):
30 drive(80, 100)
31 elif vals == (0,0,1,0,0): # Center
32 drive(100, 100)
33
34 elif vals == (0,0,1,1,0):
35 drive(100, 80)
36 elif vals == (0,0,0,1,0):
37 drive(80, 40)
38 elif vals == (0,0,0,1,1):
39 drive(60, 0)
40 elif vals == (0,0,0,0,1):
41 drive(50, -20)

Objective 8 - Read the Line

Your Line Follower rocks! But there are so many improvements you can make!

As a final step in this project, make your 'bot adapt to its environment.

Hard Coded Values

Your program uses "hard-coded" values for threshold and is_reflective. You have to modify the program each time you change them.

What if you take your 'bot to a different environment?
The line and background may be darker or lighter.
You may encounter a reflective line, or a non-reflective one.

Instead of having to modify the code every time, write code to sense the line automatically at the start of the program when BTN-1 is
pressed.

The user must first place CodeBot with the middle sensor (LS 2) ON the line, and the outer sensors (LS 0 and LS 4) OFF the
line.
With the 'bot in position, they press BTN-1, and the code auto-calibrates.
Give the user a confirmation tone using the speaker:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 89 of 213

Proper line was found! → happy 2-tone beep: "low-high"
Invalid detection → sad boooop tone

Auto-Calibration Algorithm

At the start of the program when BTN-1 is pressed:

1. Read the line sensor analog values with ls.check(0) for integers rather than bools.

sensors = ls.check(0) # Get analog values.
line = sensors[2] # Middle sensor on the line.
ground = sensors[0] # Just use one outer sensor.

2. Verify that the line and ground values are far apart. (ex: gap > 500)

If they're too close together, play invalid beep! (ex: single low tone)
Otherwise play happy beep! (ex: 2-tone "low-high" chirp)

3. If line < ground then the line is reflective. Otherwise it's not. Set is_reflective based on this.

4. Calculate and store a thresh value. Half-way between line and ground is a good start.

Implementation Note 1: storing new settings

To keep your code readable you will need to put the above algorithm in its own function.
Define global variables thresh and is_reflective to replace the hard-coded values in your code.

Concept: globals

You have seen the terms Global and Local when you use the debugger to inspect variables while stepping through your
code.

Check out the Locals and Globals tool for more information!

When you assign to a variable inside a function, Python assumes it's a local variable.

You must use the global statement to specify you want the global variable instead.

Concept: math built-ins

CodeTrek:

 1
 2 from botcore import *
 3 from time import sleep
 4
 5 # Default environment settings
 6 thresh = 2500
 7 is_reflective = False
 8
 9 def calibrate():
10 # Auto-detect the line with 'bot centered on it.
11 # Sets 'thresh' and 'is_reflective' globals on success.
12 global thresh, is_reflective

13
14 # Check the line (analog values)
15 sensors = ls.check(0)
16
17 # Use center and one edge sensor
18 line = sensors[2]
19 ground = sensors[0]
20
21 # Calculate gap from 'ground' to 'line'

When you assign to a variable inside a function, Python assumes it's a local variable.

You must use the global statement to specify you want the global variable instead.

The thresh and is_reflected variables are assigned above!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 90 of 213

22 gap = line - ground

23
24 if abs(gap) < 500:
25 # Too close - Invalid line
26 # TODO: Play boooop sound (200Hz for 0.2 sec?)

27 else:
28 # Good Line!
29 # Lower numbers mean more reflective.
30 is_reflective = line < ground
31 # Calculate "half-way" from ground.
32 thresh = ground + (gap / 2)
33 # Round to an integer.
34 thresh = round(thresh)
35 # TODO: Play happy chirp (500Hz, 1000Hz for 0.1 sec each?)

36
37 # Wait for BTN-0 before moving, and Calibrate if BTN-1 pressed.
38 while True:
39 if buttons.was_pressed(0):
40 break
41 elif buttons.was_pressed(1):
42 calibrate()

43 buttons.was_pressed(1) # Debounce!
44
45 motors.enable(True)
46
47 # Speed limit. Max speed = 1.0, 50% is 0.5, etc.
48 SPEED_LIMIT = 0.8
49
50 def drive(left, right):
51 # Apply -100 to 100 power to motors, enforcing SPEED_LIMIT.
52 motors.run(LEFT, left * SPEED_LIMIT)
53 motors.run(RIGHT, right * SPEED_LIMIT)
54
55 while True:
56 vals = ls.check(thresh, is_reflective)
57 leds.ls(vals)
58
59
60 # Drive based on sensor readings.

The gap variable represents the difference between the line and the
ground.

Remember using the speaker in the Animatronics mission?

There was a specific sequence of code you wrote, the algorithm looked like:

1. Play a sound
2. Wait for a duration
3. Turn off the sound

In Python, it looks like this!

spkr.pitch(200)
sleep(0.2)
spkr.off()

Similar to the previous step, except now we're playing 2 sounds!

spkr.pitch(500)
sleep(0.1)
spkr.pitch(1000)
sleep(0.1)
spkr.off()

Aww yeah, another condition!

If the user pressed BTN-1 BEFORE BTN-0, run the calibration function!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 91 of 213

61 if vals == (1,0,0,0,0):
62 drive(-20, 50)
63 elif vals == (1,1,0,0,0):
64 drive(0, 60)
65 elif vals == (0,1,0,0,0):
66 drive(40, 80)
67 elif vals == (0,1,1,0,0):
68 drive(80, 100)
69 elif vals == (0,0,1,0,0):
70 drive(100, 100)
71 elif vals == (0,0,1,1,0):
72 drive(100, 80)
73 elif vals == (0,0,0,1,0):
74 drive(80, 40)
75 elif vals == (0,0,0,1,1):
76 drive(60, 0)
77 elif vals == (0,0,0,0,1):
78 drive(50, -20)
79

Goals:

Define a function named calibrate().

In the calibrate() function:

Use the global statement to specify you want the global variables thresh and is_reflective.

In the calibrate() function:

Play a 'boooooooop' (200Hz) sound if abs(gap) < 500.

else, play a 'happy chirp' (500Hz then 1000Hz) sound

Tools Found: Speaker, Analog to Digital Conversion, int, bool, Functions, Locals and Globals, Variables, Math Operators, float

Solution:

 1
 2 from botcore import *
 3 from time import sleep
 4
 5 # Default environment settings
 6 thresh = 2500
 7 is_reflective = False
 8
 9 def calibrate():
10 # Auto-detect the line with 'bot centered on it.
11 # Sets 'thresh' and 'is_reflective' globals on success.
12 global thresh, is_reflective
13
14 # Check the line (analog values)
15 sensors = ls.check(0)
16
17 # Use center and one edge sensor
18 line = sensors[2]
19 ground = sensors[0]
20
21 # Calculate gap from 'ground' to 'line'
22 gap = line - ground
23
24 print(gap)
25 if abs(gap) < 500:
26 # Too close - Invalid line
27 spkr.pitch(200)
28 sleep(0.2)
29 spkr.off()
30 else:
31 # Good Line!
32 # Lower numbers mean more reflective.
33 is_reflective = line < ground
34 # Calculate "half-way" from ground.
35 thresh = ground + (gap / 2)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 92 of 213

36 # Round to an integer.
37 thresh = round(thresh)
38 spkr.pitch(500)
39 sleep(0.1)
40 spkr.pitch(1000)
41 sleep(0.1)
42 spkr.off()
43
44 # Wait for BTN-0 before moving, and Calibrate if BTN-1 pressed.
45 while True:
46 if buttons.was_pressed(0):
47 break
48 elif buttons.was_pressed(1):
49 calibrate()
50 buttons.was_pressed(1) # Debounce!
51
52 motors.enable(True)
53
54 # Speed limit. Max speed = 1.0, 50% is 0.5, etc.
55 SPEED_LIMIT = 0.8
56
57 def drive(left, right):
58 # Apply -100 to 100 power to motors, enforcing SPEED_LIMIT.
59 motors.run(LEFT, left * SPEED_LIMIT)
60 motors.run(RIGHT, right * SPEED_LIMIT)
61
62 while True:
63 vals = ls.check(thresh, is_reflective)
64 leds.ls(vals)
65
66
67 # Drive based on sensor readings.
68 if vals == (1,0,0,0,0):
69 drive(-20, 50)
70 elif vals == (1,1,0,0,0):
71 drive(0, 60)
72 elif vals == (0,1,0,0,0):
73 drive(40, 80)
74 elif vals == (0,1,1,0,0):
75 drive(80, 100)
76 elif vals == (0,0,1,0,0):
77 drive(100, 100)
78 elif vals == (0,0,1,1,0):
79 drive(100, 80)
80 elif vals == (0,0,0,1,0):
81 drive(80, 40)
82 elif vals == (0,0,0,1,1):
83 drive(60, 0)
84 elif vals == (0,0,0,0,1):
85 drive(50, -20)
86

Quiz 2 - Curves Ahead

Slow down a bit!

With all the lists and tuples and interesting operators going on in your code, I'm getting
dizzy!

Take a moment to review what you've learned.

Please answer the following questions based on this tuple:

speeds = (-32, 73, 88, 95)

Question 1: What is the value of speeds[1]?

done 73

Python with Robots Mission Content

©2024 Firia Labs Appendix A 93 of 213

close -32

close 88

close 95

Question 2: Can you change the top speed in this tuple to 100?

done No, tuples are immutable.

close speeds[3] = 100

close speeds[100] = True

close No, tuple values can't exceed 100

Question 3: What is abs(speeds[0])?

done 32

close 73

close 88

close -32

close 0

Mission 6 Complete

You now have the tools...

From here you can go on to build world class Line-Following robotic
software.
There's always a "fine line" between work and play with Line Followers!
The coding skills you've learned apply to industrial and commercial
robotics applications.
But they're also very useful for school and club robotics competitions.

Best of all, you know what makes this thing tick!

There's no "hidden magic" going on here.
Even though I'll admit it seems magical :-)

You're writing Python code down to the metal.

This is as real as it gets!

Try Your Skills

Suggested Re-mix Ideas:

Experiment to see if there is a better threshold point than half-way between line and ground.
Expect that your 'bot will bounce slightly as it navigates a line course.
Can you reliably avoid erroneous sensor readings?

Selectable driving setup:
Use BTN-0 to select from up to 8 different setups.
When ready, position 'bot and press BTN-1 to Calibrate and Start!

Robot Racing Circuit:
Set up a race track loop course with some tight turns as well as gentle curves and straight sections.
Test your 'bot on the track, and increase its speed until it fails.
Examine why it fails, and improve your code.
Use a stopwatch to check your lap-time, and compete with your friends!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 94 of 213

Mission 7 - Hot Pursuit
Can CodeBot see objects in its path?

Not exactly, since it doesn't have a camera.
But it does have an Infrared Proximity Sensor System!
Your 'bot uses reflected IR light to detect obstacles.

In this project you'll go in-depth with the proximity sensors and write code to
detect, pursue, and avoid objects.

These sensors add an awesome new dimension to CodeBot's
capabilities!

Project Goals:

Use the basic proximity sensors detect() API to make a presence
detector.
Experiment with light and dark ground-surfaces to find the best emitter power and detection threshold levels for each
environment.
Use the range() API to make an interactive display of object reflectivity.
Write calibration functions so CodeBot can adapt to its environment!
Bring in the motors for a Face Off challenge.
Code a "Curious Puppy Bot" that will chase a ball around.

Objective 1 - Presence Detector

The proximity sensors on CodeBot's front corners detect infrared (IR) light that
bounces back from objects in its path.

Each sensor is covered by a visor so most of the incoming light
comes from straight ahead.
The visor shades the sensor from IR in sunlight and overhead
lights.
...It also blocks some reflections from the ground and objects to
the sides.

The source of the infrared light is the LED emitter behind Line Sensor LED #2.

Like a bright "headlight", it lights up objects in front of your 'bot.

Notice the picture on the right.

The LED emitter emits light, and the sensors detect it.
Most of the light reflected back into the sensors is from the butterfly.
But there is also some light bouncing off the ground into the sensors...

Introducing the prox.detect() API.

The first function you'll use with the proximity sensors is prox.detect(). Calling this
function pulses the emitter and detects reflected IR light.

This function returns a tuple of two bool values: (left, right)
The values are True if a reflection is detected, False if not.

vals = prox.detect()
left_detected = vals[0]
right_detected = vals[1]

Note: The botcore library defines constants LEFT = 0 and RIGHT = 1. You've used these with the motors, but they're also
handy for the proximity sensors.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 95 of 213

Create a New File!

Use the File → New File menu to create a new file called HotPursuit.

Check the 'Trek!

Write a program that uses prox.detect() to detect the presence of an object.

Did you know there are LEDs just in front of each Proximity Sensor?

Run It!

Place your 'bot so its proximity sensors are pointed into open space.

Looking out from the edge of your desk is a good position for this.

The PROX LEDs should be Off when there is nothing in front of the 'bot.

Use a reflective object (like a piece of white paper) to test the sensors.
How far away can they sense?

Those prox LEDs are a little harder to see, since they're partly shielded by the visors.

Look closely and you should see amber LEDs lighting up in front of each sensor when it detects reflection!

You may want to modify the code so that both the prox and USER LED arrays (leds.user(p)) show the sensor
detect status...

Experiment with this code:

It works well on the edge of a desk.
But what about if the 'bot is placed in the middle of a white surface, like a piece of notebook paper?

Try Your Skills: Test your code

Try running this code while placing CodeBot on white and black surfaces.

Reflection from the ground could be a problem, right?
Don't worry... your proximity sensors can overcome this issue with a little more coding.

CodeTrek:

 1 from botcore import *
 2
 3 while True:
 4 # Check proximity sensors
 5 p = prox.detect()
 6
 7 # Show (left, right) on the PROX LEDs
 8 leds.prox(p)

Goals:

Assign the output of prox.detect() to the variable p.

Use the variable p as an argument to leds.prox().

Tools Found: Proximity Sensors, tuple, bool, Motors, LED, Variables

Solution:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 96 of 213

 1 from botcore import *
 2
 3 while True:
 4 # Check proximity sensors
 5 p = prox.detect()
 6
 7 # Show (left, right) on the PROX LEDs
 8 leds.prox(p)

Objective 2 - Power and Sensitivity

The prox.detect() function is nice!

...but it has limitations.

It is too sensitive when the 'bot is on a white surface.
But on a black surface or open space you need extra sensitivity!

Be the Bot

Imagine you are in a completely dark room.

You're wearing glasses that are very foggy. You can sense light from dark to
bright, but that's it.
You have a flashlight with variable power.

Think about how you'd navigate around the room, and you'll get a sense for how to code the proximity sensors!

CodeBot provides both the "glasses" and "flashlight" controls:

A detection sensitivity from 0% - 100% controls how much light is needed for a True detection.

Detection Threshold Sensitivity Level Detect == True
0% Minimum Very bright light

100% Maximum Very dim light

An emitter power level setting from 1 (low power) to 8 (high power) controls the brightness of CodeBot's IR "flashlight".

More Control with detect(power, threshold)

It's time you get to know the two optional parameters for the prox.detect() function.

Check the 'Trek!

Modify your code to add the optional arguments for prox.detect().

Note: the default values with no arguments would be prox.detect(1, 100).
That's minimum "flashlight" power and maximum detection sensitivity.

Run It!

Experiment with different values for power and thresh.

If you decrease the thresh value, the 'bot works well even on a white surface!
Can you find the ideal value for a given surface?

Almost sensitive enough to be blinded by ground-reflection... but not quite!
How about your "Open-Air" test?

Photon torpedos at full power, and sensors at maximum!

CodeTrek:

 1 from botcore import *
 2
 3 power = 1 # Minimum power "flashlight"

Python with Robots Mission Content

©2024 Firia Labs Appendix A 97 of 213

 4 thresh = 75 # Detect at medium-high sensitivity.

 5
 6 while True:
 7 # Check proximity sensors
 8 # TODO: Use prox.detect() with 2 arguments

 9
10 # Show (left, right) on the PROX LEDs
11 leds.prox(p)

Goals:

Assign a variable named power.

Assign a variable named thresh.

Use variables power and threshold as arguments to prox.detect()

Tools Found: Proximity Sensors, Variables

Solution:

 1 from botcore import *
 2
 3 power = 1 # Minimum power "flashlight" #@1
 4 thresh = 75 # Detect at medium-high sensitivity. #@2
 5
 6 while True:
 7 # Check proximity sensors
 8 p = prox.detect(power, thresh)
 9
10 # Show (left, right) on the PROX LEDs
11 leds.prox(p)

Objective 3 - Range Scanning

The prox.detect(power, thresh) function lets you adapt to different environments.

But it takes a lot of experimentation to arrive at the ideal combination of thresh and power
for a given surface.

Fortunately the proximity sensors API has another function which makes it much
easier.

Concept: prox.range()

The prox.range() function scans multiple sensitivity levels to find the lowest detection threshold where a reflection is detected.

Parameters (all optional):

prox.range(num_samples, power, range_low, range_high)

num_samples : how many different sensitivity levels to try, 1-10. (default = 4)

The the minimum "flashlight" power.

A medium-high detection sensitivity.

max is 100!

Use power and thresh as arguments to prox.detect()!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 98 of 213

power : emitter power level for the scan, 1-8. (default = 1)
range_low : lowest sensitivity range for scan, 0-100%. (default = 0)
range_high : highest sensitivity range for scan, 0-100%. (default = 100)

Return value:

tuple of (left, right) detection threshold values 0-100%.
If no reflection was detected the return value will be (-1, -1).

Try it on the REPL

Open the Console and test both prox API functions.

Notes:

If code is already running you will need to press the ■ Stop button first!
Before calling the new functions, type from botcore import * on the REPL to import the botcore library.

Test the prox functions with no arguments, to use the default parameter values.

Type prox.range(), then press ↑ ENTER to repeat the command.
Try open air proximity (edge of desk) while you test prox.range() and prox.detect().

Check the 'Trek!

Modify your code to continuously call prox.range() and print() the result to the debug console.

Use 10 for the num_samples argument.
Higher num_samples is slower but gives more accurate results.

Remember, print() can take multiple arguments.

It converts them to strings and prints them back-to-back to the console.

Run It!

Watch the debug console as you test with different objects and distances.

It's much easier this way than typing individual commands, right?
Can you tell something about the distance to an object with prox.range()?

CodeTrek:

 1 from botcore import *
 2
 3 power = 1 # Minimum power "flashlight"
 4 thresh = 75 # Detect at medium-high sensitivity.
 5
 6 while True:
 7 # Check proximity sensors
 8 p = prox.detect(power, thresh)
 9
10 # Show (left, right) on the PROX LEDs
11 leds.prox(p)
12
13
14 # Do a range scan
15 sensed = # TODO: Do a range scan

prox.range() has all these optional parameters:

prox.range(num_samples, power, range_low, range_high)

For this example, set num_samples
to 10, and use your power variable as the second argument.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 99 of 213

16 print("Range=", sensed)
17

Hint:

Getting an error?

Import botcore first by typing from botcore import * in the REPL!

Goals:

Execute the function prox.range() in the REPL.

Assign the output of prox.range() to the variable sensed.

Tools Found: Proximity Sensors, Functions, tuple, Print Function, Keyword and Positional Arguments, str, REPL, Variables

Solution:

 1 from botcore import *
 2
 3 power = 1 # Minimum power "flashlight"
 4 thresh = 75 # Detect at medium-high sensitivity.
 5
 6 while True:
 7 # Check proximity sensors
 8 p = prox.detect(power, thresh)
 9
10 # Show (left, right) on the PROX LEDs
11 leds.prox(p)
12
13
14 # Do a range scan
15 sensed = prox.range(10, power)
16 print("Range=", sensed)
17

Objective 4 - Auto Calibration - part 1

You may have noticed some similarities between the Line Sensors and the
Proximity Sensors.

Both are based on reflected infrared light.
And both require the 'bot to adapt to its environment.

Just like before, you've started by using "hard-coded" values.

Surfaces with different ground-reflection require different values for thresh and
power.

So once again, you need...

Auto-Calibration

Here's how it should work:

Position the 'bot in a new environment, with no objects in front.
When BTN-1 is pressed, the 'bot scans to automatically find the ideal power and thresh.
Those settings are saved until the next time BTN-1 is pressed.

First step is to automate your thresh setting:

Check the 'Trek!

Modify your code to check for BTN-1 inside the while loop:

sensed = prox.range(10, power)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 100 of 213

When pressed, grab sensed = prox.range(10, power).
Set your new thresh to 5% of the maximum threshold (5) below the minimum sensed[LEFT] or sensed[RIGHT] value.
Unless the value is -1, which means it detected nothing!
If both sensors detect nothing, then thresh should be 100%.

Run It!

Test out your new Auto calibration feature.

Watch the debug console to see what thresh values it picks.
Try some different object distances to make sure it's working.

CodeTrek:

 1 from botcore import *
 2
 3 power = 1 # Minimum power "flashlight"
 4 thresh = 75 # Detect at medium-high sensitivity.
 5
 6
 7 while True:
 8 # Calibrate when BTN-1 pressed
 9 if buttons.was_pressed(1):

10 # Assume we detect nothing
11 det = 100 # max possible threshold

12
13 # Scan for minimum detection threshold
14 sensed = prox.range(10, power)
15
16 # Did Left detect something?
17 if sensed[LEFT] > 0:
18 # Save, it might be minimum...
19 det = sensed[LEFT]

20
21 # Did Right detect something?
22 if sensed[RIGHT] > 0:
23 # Keep the minimum detected value.
24 det = min(det, sensed[RIGHT])

The instructions state:

When BTN-1 is pressed, the 'bot scans to automatically find the ideal power and thresh.
Those settings are saved until the next time BTN-1 is pressed.

Therefore, we need to continuously check if BTN-1 has been pressed!

That's why your if statement should be indented under the while loop.

The variable det will represent the lowest
threshold reading between the two sensors.

You'll be reassigning the value IF one of the sensors reads a value.

What if the sensors don't read any value (-1)?

Then we'll need to use the MAX threshold!

So, set the default value of det to the MAX threshold, 100!

If the LEFT proximity sensor detected something, assign it to det.

Since you haven't checked the value of the RIGHT sensor yet, this is your LOWEST known value!

If the RIGHT sensor detects a value, you'll need to do a tiny bit more work.

You need to check whether it's LOWER than the value read by the LEFT sensor!
Fortunately, if the LEFT sensor read a value, you assigned it to the variable det!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 101 of 213

25
26 thresh = # TODO: Set to 5% below minimum ground-reflection detected.

27
28 print("Sensed=", sensed, ", set thresh=", thresh)
29
30
31 # Check proximity sensors
32 p = prox.detect(power, thresh)
33
34 # Show (left, right) on the PROX LEDs
35 leds.prox(p)

Goals:

Check for BTN-1 press inside the while loop.

Use the min function to determine the minimum value between sensed[RIGHT] and det!

After determining the lowest sensor value and assigning it to det:

Set your new thresh to 5% of the maximum threshold (5) below the minimum sensed[LEFT] or sensed[RIGHT] value.

Tools Found: Line Sensors, Proximity Sensors, Functions, Loops, Variables

Solution:

 1 from botcore import *
 2
 3 power = 1 # Minimum power "flashlight"
 4 thresh = 75 # Detect at medium-high sensitivity.
 5
 6
 7 while True:
 8 # Calibrate when BTN-1 pressed
 9 if buttons.was_pressed(1):
10 # Assume we detect nothing
11 det = 100 # max possible threshold
12
13 # Scan for minimum detection threshold
14 sensed = prox.range(10, power)
15
16 # Did Left detect something?
17 if sensed[LEFT] > 0:
18 # Save, it might be minimum...
19 det = sensed[LEFT] #@1
20
21 # Did Right detect something?
22 if sensed[RIGHT] > 0:
23 # Keep the minimum detected value.
24 det = min(det, sensed[RIGHT]) #@2
25
26 thresh = det - 5
27
28 print("Sensed=", sensed, ", set thresh=", thresh)
29
30
31 # Check proximity sensors
32 p = prox.detect(power, thresh)
33

Simply compare the value of det to sensed[RIGHT] to find the LOWEST reading between the two sensors!

The function min(det, sensed[RIGHT]) returns the LOWEST value!

The MAXIMUM threshold is 100.

5% of 100 is 5!

thresh = det - 5

Python with Robots Mission Content

©2024 Firia Labs Appendix A 102 of 213

34 # Show (left, right) on the PROX LEDs
35 leds.prox(p)

Objective 5 - Auto Calibration - part 2

Notice an Error?
Be sure to test the following requirement:

"If both sensors detect nothing, then thresh should be 100%."

Right now your program is not handling that case!

That there's a bug, friend :-)

Check the 'Trek!

Modify your code to fix the bug!

Initialize det to a large "invalid" value.
Then where you set thresh, add an if check to decide whether to use det - 5 or 100% as the new value.

Run It!

Give it another try, and test the no ground-reflection case also.

This works pretty well...
But you still have to experiment to find the right power level to set.

You'll automate that in the next step of the project.

Next Steps

Some of the code above is crying out to be made into a function. (Can you hear it?)

In the next step of the project you'll take care of that!

Oh, and there's still a bug or two left in this code... perhaps you can ignore it for now :-)

CodeTrek:

 1 from botcore import *
 2
 3 power = 1 # Minimum power "flashlight"
 4 thresh = 75 # Detect at medium-high sensitivity.
 5
 6 while True:
 7 # Calibrate when BTN-1 pressed
 8
 9 if buttons.was_pressed(1):
10 # Assume we detect nothing
11 det = 101 # larger than max possible sensitivity

12
13 # Scan for minimum detection threshold
14 sensed = prox.range(10, power)
15
16 # Did Left detect something?
17 if sensed[LEFT] > 0:
18 # Save, it might be minimum...
19 det = sensed[LEFT]
20

Assign det an invalid value!

If det is still invalid after checking both sensors, you'll know
both returned -1!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 103 of 213

21 # Did Right detect something?
22 if sensed[RIGHT] > 0:
23 # Keep the minimum detected value.
24 det = min(det, sensed[RIGHT])
25
26 # Set thresh
27 if det > 100:
28 # Nothing was detected, so set to max!
29 # TODO: set thresh to the maximum threshold value!

30 else:
31 # Set to 5% below minimum ground-reflection detected.
32 thresh = det - 5

33
34
35 print("Sensed=", sensed, ", set thresh=", thresh)
36
37 # Check proximity sensors
38 p = prox.detect(power, thresh)
39
40 # Show (left, right) on the PROX LEDs
41 leds.prox(p)

Goals:

Initialize the variable det to a large invalid (>100) value.

If det is invalid after checking both sensors, set thresh to the MAXIMUM value.

Tools Found: Functions, Variables

Solution:

 1 from botcore import *
 2
 3 power = 1 # Minimum power "flashlight"
 4 thresh = 75 # Detect at medium-high sensitivity.
 5
 6 while True:
 7 # Calibrate when BTN-1 pressed
 8
 9 if buttons.was_pressed(1):
10 # Assume we detect nothing
11 det = 101 # larger than max possible sensitivity
12
13 # Scan for minimum detection threshold
14 sensed = prox.range(10, power)
15
16 # Did Left detect something?
17 if sensed[LEFT] > 0:
18 # Save, it might be minimum...
19 det = sensed[LEFT]
20
21 # Did Right detect something?
22 if sensed[RIGHT] > 0:
23 # Keep the minimum detected value.
24 det = min(det, sensed[RIGHT])

det is still invalid!

Therefore, the sensors didn't detect anything!
Set the thresh to the maximum value!

thresh = 100

det is no longer invalid!

At least one of the sensors returned a value!
Carry on as per usual and take away 5%!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 104 of 213

25
26 # Set thresh
27 if det > 100:
28 # Nothing was detected, so set to max!
29 thresh = 100
30 else:
31 # Set to 5% below minimum ground-reflection detected.
32 thresh = det - 5
33
34
35 print("Sensed=", sensed, ", set thresh=", thresh)
36
37 # Check proximity sensors
38 p = prox.detect(power, thresh)
39
40 # Show (left, right) on the PROX LEDs
41 leds.prox(p)

Quiz 1 - Checkpoint

Question 1: Which of these is the best criticism of this comment?

Set to 5% below minimum ground-reflection detected.
thresh = det - 5

done If someone later changes the code to a different % value, say 8%, the comment will be wrong.

close TLDR. You lost me at "minimum"...

close The % character is considered an offensive rune in Elvish.

close The word "bellow" is spelled with two l's, not just one.

Question 2: What does the function prox.detect() return?

done A tuple of two boolean values.

close A tuple of two integers.

close A boolean.

close Nothing.

Question 3: What does the function prox.range() return if no reflection was detected.

done (-1, -1)

close (False, False)

close (True, True)

close (False, True)

Objective 6 - House Cleaning

Time for some chores!
Sometimes, being a great programmer requires you to slow down and improve your code!

Take some time to organize by moving your threshold calibration code to its own
function.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 105 of 213

Check the 'Trek!

Modify your code by adding a function def cal_thresh():

Cut and paste the code from beneath your if buttons.was_pressed(1): statement into the new function.
You will need to declare thresh as a global inside the function.
Add a print() statement in your main program to confirm the current power and thresh settings.
Don't forget to call your new function when the button was pressed!

Run It!

Test your program and make sure it works just like before.

Verify that your print() statement beneath the if buttons shows that you're really changing the global thresh value!

CodeTrek:

 1 from botcore import *
 2
 3 def cal_thresh():

 4 # Calibrate detection threshold using prox.range()
 5 global thresh

 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33 power = 1 # Minimum power "flashlight"
34 thresh = 75 # Detect at medium-high sensitivity.
35
36
37 while True:
38 # Calibrate when BTN-1 pressed
39 if buttons.was_pressed(1):
40 # TODO: Call your newly defined function

Define your new function named cal_thresh!

Declare thresh as a global variable.

This will allow you to modify the variable from within the function!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 106 of 213

41 print("CAL: power=", power, ", thresh=", thresh)

42
43
44 # Check proximity sensors
45 p = prox.detect(power, thresh)
46
47 # Show (left, right) on the PROX LEDs
48 leds.prox(p)

Goals:

Define a new function named cal_thresh.

Cut and paste the code from beneath your if buttons.was_pressed(1) statement as the function's content.

Declare thresh as a global variable inside the cal_thresh function.

Tools Found: Functions, Locals and Globals, Print Function, Variables

Solution:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33 power = 1 # Minimum power "flashlight"
34 thresh = 75 # Detect at medium-high sensitivity.
35
36
37 while True:
38 # Calibrate when BTN-1 pressed
39 if buttons.was_pressed(1):
40 cal_thresh()
41 print("CAL: power=", power, ", thresh=", thresh)
42

Call your new function!

Print the power and thresh to verify that your variables
are being modified.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 107 of 213

43
44 # Check proximity sensors
45 p = prox.detect(power, thresh)
46
47 # Show (left, right) on the PROX LEDs
48 leds.prox(p)

Objective 7 - POWER

Now you're ready for power!

Your code can calibrate the detection sensitivity threshold, but can it figure out the ideal power
level?

You will need a loop to cycle through each power level from 1 to 8.
STOP when either RIGHT or LEFT sensors detect reflection!

Check the 'Trek!

Modify your code by adding another function def cal_power():

Declare power as a global inside this function.
Loop through the power levels, and call cal_thresh() for each one.
break out of the loop when reflection is detected.
Call this new function instead of cal_thresh() in your if buttons block.

Run It!

Are you feeling the power?

This code is really nice.

Watch the debug console as you test different surfaces.
Be careful to stay behind the sensors as you press BTN-1

CodeTrek:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30

Python with Robots Mission Content

©2024 Firia Labs Appendix A 108 of 213

31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33
34 def cal_power():
35 # Calibrate power and detection threshold
36 # TODO: Declare power as a global variable

37 power = 0
38 while power < 8:
39 power = power + 1
40 cal_thresh()

41 if thresh < 100:
42 # Reflection detected.
43 break

44
45
46 power = 1 # Minimum power "flashlight"
47 thresh = 75 # Detect at medium-high sensitivity.
48
49 while True:
50 # Calibrate when BTN-1 pressed
51 if buttons.was_pressed(1):
52 cal_power()

53 print("CAL: power=", power, ", thresh=", thresh)
54
55 # Check proximity sensors
56 p = prox.detect(power, thresh)
57
58 # Show (left, right) on the PROX LEDs
59 leds.prox(p)

Goals:

Define a function named cal_power.

Declare power as a global.

Loop through the power levels.

Call cal_power().

Tools Found: Loops, Functions, Locals and Globals, Variables

Solution:

 1 from botcore import *
 2
 3 def cal_thresh():

Declare power as a global variable so you can alter it's value from within
your new cal_power function!

global power

Calling cal_thresh() will alter the thresh variable!

If you alter power, then call cal_thresh(), you'll be able to tell the LOWEST
power level that detects a reflection!

If a thresh value is detected, you found an ideal power level, break!

Replace your cal_thresh() call with a cal_power() call.

cal_power is already calling cal_thresh, no need to double up!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 109 of 213

 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33
34 def cal_power():
35 # Calibrate power and detection threshold
36 global power
37 power = 0
38 while power < 8:
39 power = power + 1
40 cal_thresh()
41 if thresh < 100:
42 # Reflection detected.
43 break
44
45
46 power = 1 # Minimum power "flashlight"
47 thresh = 75 # Detect at medium-high sensitivity.
48
49 while True:
50 # Calibrate when BTN-1 pressed
51 if buttons.was_pressed(1):
52 cal_power()
53 print("CAL: power=", power, ", thresh=", thresh)
54
55 # Check proximity sensors
56 p = prox.detect(power, thresh)
57
58 # Show (left, right) on the PROX LEDs
59 leds.prox(p)

Objective 8 - Face Off!

Are you ready to get moving?

I thought so!

Get Your Motor(s) Running!

Your next mission is to write code so your 'bot uses its proximity sensors to detect
and rotate to face an object moving in front of it.

You just have to add a small amount of code to the end of your main while loop
to make it happen!

Hint: After the leds.prox(p), use an if statement with p[LEFT] and p[RIGHT] to control
the direction of the motors.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 110 of 213

Check the 'Trek!

Modify your code so your 'bot Rotates to Face an Object.

You have all the tools to do this step on your own.

Check the Motors tool for a refresher if you need it.
Or take a look through your previous mission code!
Keep the rotation speed down around 50% to start with.

Run It!

How's it rotating?

Don't forget to Calibrate using BTN-1.
Does your 'bot stop when it's facing an object?

Or does it oscillate back and forth?
Like an excited puppy?!?

How well does it track a moving target?
Does it lose track? If so, why?
Can you improve it?

CodeTrek:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33 def cal_power():
34 # Calibrate power and detection threshold
35 global power
36 power = 0
37 while power < 8:
38 power = power + 1
39 cal_thresh()
40 if thresh < 100:
41 # Reflection detected.
42 break
43
44
45 power = 1 # Minimum power "flashlight"
46 thresh = 75 # Detect at medium-high sensitivity.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 111 of 213

47
48 while True:
49 # Calibrate when BTN-1 pressed
50 if buttons.was_pressed(1):
51 cal_power()
52 print("CAL: power=", power, ", thresh=", thresh)
53
54 # Check proximity sensors
55 p = prox.detect(power, thresh)
56
57 # Show (left, right) on the PROX LEDs
58 leds.prox(p)
59
60
61 # Use p[LEFT], p[RIGHT] to control the motors!
62 # TODO: code this part

63
64

Goals:

Use an if condition chain as shown below:

if p[LEFT] and p[RIGHT]:
 # The object is straight ahead, stop moving!
elif p[LEFT]:
 # The object is to the left, turn left!
elif p[RIGHT]:
 # The object is to the right, turn right!
else:
 # The location of the object is unknown, stop moving!

Within the if condition chain in the previous goal:

Call motors.run in both directions at least 3 times (6 total calls).

Tools Found: Proximity Sensors, Motors, bool

Solution:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22

This part is up to you!

p[LEFT] tells you if there's an object to your... LEFT!
p[RIGHT] tells you the opposite!
If both are true, the object is infront!

Give it your best shot!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 112 of 213

23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33 def cal_power():
34 # Calibrate power and detection threshold
35 global power
36 power = 0
37 while power < 8:
38 power = power + 1
39 cal_thresh()
40 if thresh < 100:
41 # Reflection detected.
42 break
43
44
45 power = 1 # Minimum power "flashlight"
46 thresh = 75 # Detect at medium-high sensitivity.
47
48 while True:
49 # Calibrate when BTN-1 pressed
50 if buttons.was_pressed(1):
51 cal_power()
52 print("CAL: power=", power, ", thresh=", thresh)
53
54 # Check proximity sensors
55 p = prox.detect(power, thresh)
56
57 # Show (left, right) on the PROX LEDs
58 leds.prox(p)
59
60
61 # Use p[LEFT], p[RIGHT] to control the motors!
62 motors.enable(True)
63 if p[LEFT] and p[RIGHT]:
64 # The object is straight ahead, do nothing!
65 motors.run(LEFT, 0)
66 motors.run(RIGHT, 0)
67 motors.enable(False)
68 elif p[LEFT]:
69 # The object is to the left, turn left!
70 motors.run(LEFT, -50)
71 motors.run(RIGHT, 50)
72 elif p[RIGHT]:
73 # The object is to the right, turn right!
74 motors.run(LEFT, 50)
75 motors.run(RIGHT, -50)
76 else:
77 motors.run(LEFT, 0)
78 motors.run(RIGHT, 0)
79 motors.enable(False)

Objective 9 - Face Off Harder!

Another Handy Feature

While you're testing code like this it's nice to be able to toggle the motors ON/OFF.

Check out the code below!

Toggle a variable
go_motors = False

go_motors = not go_motors # (not False) == True

go_motors = not go_motors # (not True) == False

print("value=", go_motors) # "value= False"

Python with Robots Mission Content

©2024 Firia Labs Appendix A 113 of 213

It uses the logical operator not.
See how it flips the bool value from False to True?
Then next time, it flips it back to False!

Use the not operator to toggle a variable for motors.enable().

You'll need code inside your loop checking for a button press.
Use BTN-0 for the "toggle" action.

Check the 'Trek!

Modify your code to add the motor toggle feature described above.

Be sure to initialize the go_motors variable above your while loop.
Maybe you should control a USER LED also, to warn the user when
motors are live!

Run It!

Check it out!

Now you have BTN-0 to enable/disable the motors, and BTN-1 for calibration.

CodeTrek:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33 def cal_power():
34 # Calibrate power and detection threshold
35 global power
36 power = 0
37 while power < 8:
38 power = power + 1
39 cal_thresh()
40 if thresh < 100:
41 # Reflection detected.
42 break
43
44
45 power = 1 # Minimum power "flashlight"

Python with Robots Mission Content

©2024 Firia Labs Appendix A 114 of 213

46 thresh = 75 # Detect at medium-high sensitivity.
47 go_motors = False # Motors are OFF initially

48
49 while True:
50 # Calibrate when BTN-1 pressed
51 if buttons.was_pressed(1):
52 cal_power()
53 print("CAL: power=", power, ", thresh=", thresh)
54
55 # Check proximity sensors
56 p = prox.detect(power, thresh)
57
58 # Show (left, right) on the PROX LEDs
59 leds.prox(p)
60
61 # --- Motor control code from the previous objective ---

62
63 if buttons.was_pressed(0):
64 # TODO: Toggle go_motors

65 motors.enable(go_motors)

66 # Show "enabled" status LED
67 leds.user_num(0, go_motors)

68

Goals:

Toggle motors.enable by using the not operator on the go_motors variable.

Call leds.user_num(0, go_motors).

Tools Found: Logical Operators, bool, Variables, Motors, CodeBot LEDs

Solution:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing

Initialize the variable go_motors, start with the motors turned OFF.

You don't need to copy this comment down!

This is where your code from the last objective will be!

Assign the variable go_motors to the inverse of it's current value!

go_motors = not go_motors

Now the value is flipped!

Use the newly flipped go_motors variable as the argument to motors.enable
to turn the motors ON or OFF.

Display the state of go_motors on user LED 0.

Watch it update and reflect the state of the motors.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 115 of 213

 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33 def cal_power():
34 # Calibrate power and detection threshold
35 global power
36 power = 0
37 while power < 8:
38 power = power + 1
39 cal_thresh()
40 if thresh < 100:
41 # Reflection detected.
42 break
43
44
45 power = 1 # Minimum power "flashlight"
46 thresh = 75 # Detect at medium-high sensitivity.
47 go_motors = False # Motors are OFF initially
48
49 while True:
50 # Calibrate when BTN-1 pressed
51 if buttons.was_pressed(1):
52 cal_power()
53 print("CAL: power=", power, ", thresh=", thresh)
54
55 # Check proximity sensors
56 p = prox.detect(power, thresh)
57
58 # Show (left, right) on the PROX LEDs
59 leds.prox(p)
60
61 # --- Motor control code from the previous objective ---
62
63 if buttons.was_pressed(0):
64 go_motors = not go_motors
65 motors.enable(go_motors)
66 # Show "enabled" status LED
67 leds.user_num(0, go_motors)
68

Objective 10 - Chase Mode

Your 'bot only needs a tiny nudge now to not just track an object, but to chase after it!

A Simple Algorithm

1. If both LEFT and RIGHT sensors see an object, move forward.
2. When only the LEFT sensor detects something, rotate left.
3. When only the RIGHT sensor detects something, rotate right.
4. If neither sensor detects something, stop moving.

Even the simple algorithm above can empower your 'bot to follow a ball around!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 116 of 213

Get coding!

Check the 'Trek!

Modify your code to chase an object in view!

Run It!

Test your code with a variety of objects!

What sizes, shapes, and colors work best?
Try an empty paper cup turned on its side.

Does your 'bot follow it around in a circle?

CodeTrek:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33 def cal_power():
34 # Calibrate power and detection threshold
35 global power
36 power = 0
37 while power < 8:
38 power = power + 1
39 cal_thresh()
40 if thresh < 100:
41 # Reflection detected.
42 break
43

Python with Robots Mission Content

©2024 Firia Labs Appendix A 117 of 213

44
45 power = 1 # Minimum power "flashlight"
46 thresh = 75 # Detect at medium-high sensitivity.
47 go_motors = False
48 SPEED = 50

49
50 while True:
51 # Calibrate when BTN-1 pressed
52 if buttons.was_pressed(1):
53 cal_power()
54 print("CAL: power=", power, ", thresh=", thresh)
55
56 # BTN-0 toggles motors ON/OFF
57 if buttons.was_pressed(0):
58 go_motors = not go_motors
59 motors.enable(go_motors)
60 # Show "enabled" status LED
61 leds.user_num(0, go_motors)
62
63 # Check proximity sensors
64 p = prox.detect(power, thresh)
65
66 # Show (left, right) on the PROX LEDs
67 leds.prox(p)
68
69
70 # Chase mode!

71 if p[LEFT] and p[RIGHT]:
72 # I see you! Charge ahead!
73 # TODO: drive forward!

74 elif p[RIGHT]:
75 # Rotate right to face object.
76 motors.run(LEFT, +SPEED)
77 motors.run(RIGHT, -SPEED)
78 elif p[LEFT]:
79 # Rotate left to face object.
80 motors.run(LEFT, -SPEED)
81 motors.run(RIGHT, +SPEED)
82 else:
83 # Nothing in view. Stop moving.
84 motors.run(LEFT, 0)
85 motors.run(RIGHT, 0)

Goal:

If both p[LEFT] and p[RIGHT] sensors are triggered, drive forward!

Tools Found: Variables

Solution:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()

Initialize the variable SPEED so you can easily adjust the speed by updating a single variable!

Start with a SPEED of 50 but feel free to change it as you see fit!

The difference between chasing and rotating is minimal!

Rather than stopping when both LEFT and RIGHT sensors are triggered, go forward!

Full steam ahead!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 118 of 213

 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
10 # Scan for minimum detection threshold
11 sensed = prox.range(10, power)
12
13 # Did Left detect something?
14 if sensed[LEFT] > 0:
15 # Save, it might be minimum...
16 det = sensed[LEFT]
17
18 # Did Right detect something?
19 if sensed[RIGHT] > 0:
20 # Keep the minimum detected value.
21 det = min(det, sensed[RIGHT])
22
23 # Set thresh
24 if det > 100:
25 # Nothing was detected, so set to max!
26 thresh = 100
27 else:
28 # Set to 5% below minimum ground-reflection detected.
29 thresh = det - 5
30
31 print("Sensed=", sensed, ", set thresh=", thresh)
32
33 def cal_power():
34 # Calibrate power and detection threshold
35 global power
36 power = 0
37 while power < 8:
38 power = power + 1
39 cal_thresh()
40 if thresh < 100:
41 # Reflection detected.
42 break
43
44
45 power = 1 # Minimum power "flashlight"
46 thresh = 75 # Detect at medium-high sensitivity.
47 go_motors = False
48 SPEED = 50
49
50 while True:
51 # Calibrate when BTN-1 pressed
52 if buttons.was_pressed(1):
53 cal_power()
54 print("CAL: power=", power, ", thresh=", thresh)
55
56 # BTN-0 toggles motors ON/OFF
57 if buttons.was_pressed(0):
58 go_motors = not go_motors
59 motors.enable(go_motors)
60 # Show "enabled" status LED
61 leds.user_num(0, go_motors)
62
63 # Check proximity sensors
64 p = prox.detect(power, thresh)
65
66 # Show (left, right) on the PROX LEDs
67 leds.prox(p)
68
69
70 # Chase mode!
71 if p[LEFT] and p[RIGHT]:
72 # I see you! Charge ahead!
73 motors.run(LEFT, +SPEED)
74 motors.run(RIGHT, +SPEED)
75 elif p[RIGHT]:
76 # Rotate right to face object.
77 motors.run(LEFT, +SPEED)
78 motors.run(RIGHT, -SPEED)
79 elif p[LEFT]:
80 # Rotate left to face object.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 119 of 213

81 motors.run(LEFT, -SPEED)
82 motors.run(RIGHT, +SPEED)
83 else:
84 # Nothing in view. Stop moving.
85 motors.run(LEFT, 0)
86 motors.run(RIGHT, 0)
87

Objective 11 - Smarter Pursuit

You may already have ideas about making an even smarter Chase Bot!

Here are some thoughts:

What do you do when nothing is detected?
Is stopping the best answer?
Should you keep acting on the last detection?
Maybe run a search pattern...

Does your 'bot really need to do full rotation code when the target it's chasing just swerved
a little to one side?

Rotation stops forward progress. It's slowing you down!
Your 'bot only checks instantaneous sensor readings, and ignores the past.

Losing sight of the target for an instant is no reason to give up!

Check the 'Trek!

Time to upgrade!

Instead of always doing "full rotation", make a new function def drive(speed, turn_ratio)

The turn_ratio parameter is the fraction of speed to use for turning.
So 0 will go straight, while -0.2 would veer LEFT a little.

Instead of acting on instantaneous sensor readings, add up multiple samples.

Ex: For every 100 readings, keep count of LEFTs versus RIGHTs.
Use that sample data to calculate the turn_ratio.

The code below replaces your if...elif logic with +/- calculation of a "target position", and defines the new drive() function.

Run It!

Test this version out!

It only takes about a tenth of a second for this code to read 100 samples!
So it's adjusting the motors about 10 times per second.
Try setting the SPEED to 100 (max), and see how it performs.

You may want to put some print() statements of your own in this code, to explore what's going on with different sensor readings while
it's running.

There are many ways to improve your ChaseBot!

There is no perfect "Right Way" to implement this.
I've just given you some ways you might begin thinking about it.
... and there's no doubt that YOU can make a much, much better version!

CodeTrek:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity

Python with Robots Mission Content

©2024 Firia Labs Appendix A 120 of 213

 9
 10 # Scan for minimum detection threshold
 11 sensed = prox.range(10, power)
 12
 13 # Did Left detect something?
 14 if sensed[LEFT] > 0:
 15 # Save, it might be minimum...
 16 det = sensed[LEFT]
 17
 18 # Did Right detect something?
 19 if sensed[RIGHT] > 0:
 20 # Keep the minimum detected value.
 21 det = min(det, sensed[RIGHT])
 22
 23 # Set thresh
 24 if det > 100:
 25 # Nothing was detected, so set to max!
 26 thresh = 100
 27 else:
 28 # Set to 5% below minimum ground-reflection detected.
 29 thresh = det - 5
 30
 31 print("Sensed=", sensed, ", set thresh=", thresh)
 32
 33 def cal_power():
 34 # Calibrate power and detection threshold
 35 global power
 36 power = 0
 37 while power < 8:
 38 power = power + 1
 39 cal_thresh()
 40 if thresh < 100:
 41 # Reflection detected.
 42 break
 43
 44 def drive(speed, turn_ratio):
 45 # A fraction of the speed goes to turning.
 46 # speed: 0-100 ; turn_ratio: L=-1, R=+1, 0=straight

 47 turn_spd = speed * turn_ratio

 48 fwd_spd = speed - abs(turn_spd)

Your new function, drive(speed, turn_ratio), will gently
turn the motors using math!

The parameter speed is self-explanatory!
turn_ratio is how hard you should turn left or right,

-1 means turn left hard!

-0.1 means turn left gradually.

1 means turn right hard!

turn_spd represents... the turn speed!

If the turn_ratio is -1 (which means hard LEFT!), and the
speed is 50, the turn_spd would be -50!
You'll use this in combination with forward speed to determine
each motor's speed!

fwd_spd represents... the forward speed!

The harder your turning left or right, the slower you
want to move forward.
The abs(number) returns the absolute value of a number.

abs(-50) == 50!

Therefore, if the turn_spd is -50 (hard left),
and the speed is 50...

50 - abs(-50) == 0 !

Python with Robots Mission Content

©2024 Firia Labs Appendix A 121 of 213

 49 motors.run(LEFT, fwd_spd + turn_spd)
 50 motors.run(RIGHT, fwd_spd - turn_spd)

 51
 52
 53 power = 1 # Minimum power "flashlight"
 54 thresh = 75 # Detect at medium-high sensitivity.
 55 go_motors = False
 56 SPEED = 50
 57
 58 # Sensor reading sample data
 59 n_sample = 0 # Count number of samples
 60 target = 0 # Sensed target position.
 61 # +increment RIGHT, -decrement LEFT

 62
 63 while True:
 64 # Calibrate when BTN-1 pressed
 65 if buttons.was_pressed(1):
 66 cal_power()
 67 print("CAL: power=", power, ", thresh=", thresh)
 68
 69 # BTN-0 toggles motors ON/OFF
 70 if buttons.was_pressed(0):
 71 go_motors = not go_motors
 72 motors.enable(go_motors)
 73 # Show "enabled" status LED
 74 leds.user_num(0, go_motors)
 75
 76 # Check proximity sensors
 77 p = prox.detect(power, thresh)
 78
 79 # Show (left, right) on the PROX LEDs
 80 leds.prox(p)
 81
 82
 83 # Update sample data.
 84 # Adjust sensed 'target' position to left(-) or right(+)
 85 n_sample = n_sample + 1

 86 if p[LEFT]:
 87 target = target - 1
 88 if p[RIGHT]:
 89 target = target + 1

The faster the 'bot is turning, the slower forward it'll go!

When turning LEFT:

You want to add fwd_spd and turn_spd becuase turn_spd is negative
when it represents a left turn!

When turning RIGHT:

You want to subtract fwd_spd and turn_spd becuase
turn_spd is positive when it represents a right turn!

In previous objectives, your 'bot was jolting back and forth when the sensor reading changed.

You need a more gradual response.

So, rather than turning every time the reading changes, turn after 100 readings!

The variable n_sample represents the total number of readings.
The variable target represents the difference in the quantity of LEFT and RIGHT sensor hits.

n_sample is a tally of the number of sensor readings.

Therefore, every time we read the sensor, iterate n_sample!

Here's how target will keep track of the number of LEFT and RIGHT sensor hits:

If the LEFT sensor hits, decrement (subtract 1) from target!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 122 of 213

 90
 91 # Adjust motors each sample interval.
 92 if n_sample == 100:
 93 # Use 'target' value and 'n_sample' to calculate 'turn_ratio'.
 94 drive(SPEED, target / n_sample)

 95
 96 # Reset for next sample interval
 97 n_sample = 0
 98 target = 0
 99
100

Goals:

Define a function called drive(speed, turn_ratio).

Call drive every 100 samples.

When n_sample reaches 100!

Reset n_sample and target after 100 samples.

Tools Found: Functions, Motors, Parameters, Arguments, and Returns, Variables, Iterable

Solution:

 1 from botcore import *
 2
 3 def cal_thresh():
 4 # Calibrate detection threshold using prox.range()
 5 global thresh
 6
 7 # Assume we detect nothing
 8 det = 101 # larger than max possible sensitivity
 9
 10 # Scan for minimum detection threshold
 11 sensed = prox.range(10, power)
 12
 13 # Did Left detect something?
 14 if sensed[LEFT] > 0:
 15 # Save, it might be minimum...
 16 det = sensed[LEFT]
 17
 18 # Did Right detect something?
 19 if sensed[RIGHT] > 0:
 20 # Keep the minimum detected value.
 21 det = min(det, sensed[RIGHT])
 22
 23 # Set thresh
 24 if det > 100:
 25 # Nothing was detected, so set to max!
 26 thresh = 100
 27 else:
 28 # Set to 5% below minimum ground-reflection detected.
 29 thresh = det - 5
 30
 31 print("Sensed=", sensed, ", set thresh=", thresh)

If the RIGHT sensor hits, increment (add 1) to target!

If both sensors hit, target will end up unchanged!

Over 100 readings, target will tell us if one sensor hit more than the other!

Time to put it all together!

The turn_ratio parameter expected by the function drive
can be derived by dividing target by n_sample.
If more LEFT sensor hits are read, the value will be negative.
If more RIGHT sensor hits are read, the value will be positive.
The value will always fall within a range between -1 and 1!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 123 of 213

 32
 33 def cal_power():
 34 # Calibrate power and detection threshold
 35 global power
 36 power = 0
 37 while power < 8:
 38 power = power + 1
 39 cal_thresh()
 40 if thresh < 100:
 41 # Reflection detected.
 42 break
 43
 44 def drive(speed, turn_ratio):
 45 # A fraction of the speed goes to turning.
 46 # speed: 0-100 ; turn_ratio: L=-1, R=+1, 0=straight
 47 turn_spd = speed * turn_ratio
 48 fwd_spd = speed - abs(turn_spd)
 49 motors.run(LEFT, fwd_spd + turn_spd)
 50 motors.run(RIGHT, fwd_spd - turn_spd)
 51
 52
 53 power = 1 # Minimum power "flashlight"
 54 thresh = 75 # Detect at medium-high sensitivity.
 55 go_motors = False
 56 SPEED = 50
 57
 58 # Sensor reading sample data
 59 n_sample = 0 # Count number of samples
 60 target = 0 # Sensed target position. #@1
 61 # +increment RIGHT, -decrement LEFT
 62
 63 while True:
 64 # Calibrate when BTN-1 pressed
 65 if buttons.was_pressed(1):
 66 cal_power()
 67 print("CAL: power=", power, ", thresh=", thresh)
 68
 69 # BTN-0 toggles motors ON/OFF
 70 if buttons.was_pressed(0):
 71 go_motors = not go_motors
 72 motors.enable(go_motors)
 73 # Show "enabled" status LED
 74 leds.user_num(0, go_motors)
 75
 76 # Check proximity sensors
 77 p = prox.detect(power, thresh)
 78
 79 # Show (left, right) on the PROX LEDs
 80 leds.prox(p)
 81
 82
 83 # Update sample data.
 84 # Adjust sensed 'target' position to left(-) or right(+)
 85 n_sample = n_sample + 1
 86 if p[LEFT]:
 87 target = target - 1
 88 if p[RIGHT]:
 89 target = target + 1
 90
 91 # Adjust motors each sample interval.
 92 if n_sample == 100:
 93 # TODO: Use 'target' value and 'n_sample' to calculate 'turn_ratio'.
 94 drive(SPEED, target / n_sample)
 95
 96 # Reset for next sample interval
 97 n_sample = 0
 98 target = 0
 99
100

Mission 7 Complete

This project has given you an in-depth view of a type of technology that's used all around you!

Applications: Proximity Sensing

Python with Robots Mission Content

©2024 Firia Labs Appendix A 124 of 213

The kind of code you've written is inside stuff you might use
every day, without even thinking about it!

Touchless faucets, dispensers, and hand-dryers.
Automatic doors.
Vehicle navigation and safety systems.
Factory automation systems of all kinds.

Try Your Skills

Suggested Re-mix Ideas:

Create a "People Counter".
Start with the simple presence detector code.
Count the number of detect events and print() it to the debug console.

Code an obstacle avoiding robot.
You can chase objects, but can you avoid them?
Turn away from detected objects and run!

Code your own version of prox.range() using only the prox.detect() function.
Loop until you find the minimum sensitivity where detected == True
It won't likely be as fast as prox.range(), but it will be yours!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 125 of 213

Mission 8 - Navigation
Plotting a Course for Your 'Bot!

You're already using sensors for navigation.
Line Sensors can guide you precisely - as long as there's a guiding line on

the surface.
Following or avoiding objects with the Proximity Sensors is a form of
navigation also.

But what if you just need to move forward a certain distance at a certain speed?

...or rotate for a specific angle?

Maybe you're thinking, "just use motors.run() and sleep() for those movements".

But that approach isn't very reliable for navigation...

When you move using the motors.run() function, you give a % power value to the motors. The actual speed the 'bot travels depends
on a few factors:

Type of surface. Wood, vinyl, tile, carpet - all have different textures and friction.
Battery charge level. Fresh batteries give more power, and 100% basically means "all the power the battery can give".
Slope of the surface. Uphill, downhill, or flat.

In this mission you'll write code so your 'bot can do Dead Reckoning.

Sounds like a great title for a Zombie movie!
But seriously, the term "dead reckoning" means navigating by moving a specific direction, distance,
and speed from a known location.
Perfect for those times when you don't have other sensors to guide you!

Mission Goals:

Get to know CodeBot's Wheel Encoders.
Write code to measure each wheel's distance traveled.
Define a drive() function to move CodeBot an exact distance.
Track distance over time, to measure the speed of your wheels.
Calculate your 'bots top-speed in "centimeters per second".
Write "Cruise Control" code, to maintain a *set speed* over any terrain!
Define a rotate() function that builds on your encoder code.

Navigate Ahead!

Objective 1 - The Wheel Encoders

Pick up your 'bot and turn it over!

Slowly rotate one of the wheels by hand, while observing the moving
parts.

Take a close-up look at the wheel encoders.

See how the rotating disc interrupts the light beam as it turns?
The picture shows a red beam of light shooting across... but CodeBot
uses an infrared LED, so it's invisible.

In this picture, D13 is an LED (emitter) and Q3 is a phototransistor
(detector).

As you might have guessed, your code has direct control of these parts!

Concept: Encoders API

The botcore module provides a single function that:

Activates the emitter LED.
Reads the ADC value of the detector.
Turns the emitter back off, and returns the integer value.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 126 of 213

Read the encoder's analog value.
val = enc.read(side) # 'side' is LEFT or RIGHT

Just like the Line Sensors, the value returned is an integer between 0 and 4095.

The ADC has 12 bits of resolution → 212 = 4096 numbers.

With this sensor, higher readings indicate more light reaching the detector.

Lots of Slots!

As the wheels turn, slots in the encoder disc allow pulses of light to enter the detector.

There are 20 slots in each of CodeBot's stock encoder discs.
In a full rotation, the detector will see a "dark→light" transition 20 times.
... and it will see a "light→dark" transition 20 times too!

So with 20 slots, that's 40 "events" your code can detect.

Since a full rotation is 360°, that's 360/40 = 9° measurement resolution.

Create a New File!

Use the File → New File menu to create a new file called EncoderTest.

Check the 'Trek!

Write code that calls enc.read(LEFT) repeatedly, and print()s the values to the console.

Run It!

Open the Console.

Can you see the values change as you slowly rotate the LEFT wheel?
What range of values do you observe?

Fully "open slot"? Fully "closed"?
Moving less than 9° is harder than you'd think!

CodeTrek:

1 from botcore import *
2 from time import sleep
3
4 while True:
5 val = enc.read(LEFT)
6 print(val)
7 sleep(0.5)

Goals:

Assign the value returned by enc.read(LEFT) to the variable val.

Print the variable val.

Tools Found: Wheel Encoders, LED, Analog to Digital Conversion, int, Line Sensors, Binary Numbers, Print Function, Variables

Solution:

1 from botcore import *
2 from time import sleep
3
4 while True:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 127 of 213

5 val = enc.read(LEFT)
6 print(val)
7 sleep(0.5)

Objective 2 - Check Your Pulse!

Slot: True or False?

You can sense the presence/absence of the encoder disc slot.

Just a little threshold comparison code can make a bool out of that!

The picture to the right shows how your code would read True and False as the wheel turns.

Increment count when your bool slot changes False→True
...and also when it changes back True→False!

Keeping up with state

This code will need to remember what state each encoder disc was last in.

The sensor only tells you where it is now, not where it was before.
But your code can save state in variables or lists.
Then you can compare the current state versus previous state.

Ex: - using the "Not equal to" comparison operator !=

slot = sense_slot() # Read current state
if enc_state != slot: # Compare to previous state
 # Disc has moved...

Check the 'Trek!

Modify your code as follows:

Create a new function called sense_slot().
It should check your enc.read() value against a threshold, and return a bool.

Define a variable called enc_state.
It will hold the last known "slot" state of the encoder disc.

Define a variable called enc_count.
Increment this counter when enc_state changes.

In your main while loop:
Sense the slot
If it's different than the last known state, increment and print the count!

Remove the sleep() from your code!

Run It!

Give this code a spin!

Watch the Debug Console while it runs.
You should see the count increasing as you turn the LEFT wheel.

Tune your THRESH!

You may need to adjust the value to make the count reliably change only when the wheel has moved.

Test your code!

Try turning the wheel slowly while observing the changing count.

Hey, you've now coded an optical rotary encoder!
...Like the Control Knob of a massive sound system!

What happens when you spin the wheel backwards?

CodeTrek:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 128 of 213

 1 from botcore import *
 2
 3 THRESH = # TODO: set a thresh value from your experiments.

 4
 5 def sense_slot():

 6 val = enc.read(LEFT)
 7 # TODO: return True if val is greater than thresh

 8
 9 # Track encoder state: True if in slot.
10 enc_state = sense_slot() # get initial position.

11 enc_count = 0

12
13 while True:
14 slot = sense_slot()
15 if enc_state != slot:
16 # Disc has moved!
17 enc_state = slot
18 enc_count = enc_count + 1

19 print(enc_count)

Goals:

Assign a value to the variable THRESH.

Initialize the following variables:

enc_state

end_count

Define a function called sense_slot().

In sense_slot(), return True if val is greater than thresh.

Set a value somewhere between the high and low reading you
observed in the last objective!

My readings were between 300 and 3100, so I'm going to pick 1000!

THRESH = 1000

Remember, a high reading means more light got through, indicating there was a slot!

sense_slot() returns True when a slot is detected.

In other words, when the sensor reading is high!

You can do this in a single line!

Use the comparison operator >.
return val > THRESH

You need to know the position of the wheel encoder on program run
in order to accurately track how much the disc has moved.

enc_count keeps track of how many times enc_state changes!

When enc_state != slot, the slot state has changed!

Save the new slot state to enc_state.
Iterate enc_count!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 129 of 213

Tools Found: Comparison Operators, bool, Variables, list, Functions, Math Operators, Wheel Encoders, Iterable

Solution:

 1 from botcore import *
 2
 3 THRESH = 1000 # Value from your experiments.
 4
 5 def sense_slot():
 6 val = enc.read(LEFT)
 7 return val > THRESH
 8
 9 # Track encoder state: True if in slot.
10 enc_state = sense_slot() # get initial position.
11 enc_count = 0
12
13 while True:
14 slot = sense_slot()
15 if enc_state != slot:
16 # Disc has moved!
17 enc_state = slot
18 enc_count = enc_count + 1
19 print(enc_count)

Objective 3 - Sensing Both Wheels

With a little Python code you've brought an encoder to life.

But just the LEFT wheel so far.
That's easy to fix - but try to do so without copying a bunch of code.

Remember "DRY" - Don't Repeat Yourself!

Pro Tip:

Check the 'Trek!

Run It!

Give both wheels a whirl!

You should see the [LEFT, RIGHT] enc_count values streaming by on the Debug
Console.

Double the Fun!

But hey! Not double the code!

By using functions, parameters, and lists you kept your code just about as simple as the one-wheel version.

CodeTrek:

 1 from botcore import *
 2
 3 THRESH = 1000 # Value from your experiments.
 4
 5 def sense_slot(side):
 6 val = enc.read(side)

 7 return val > THRESH
 8

Update your sense_slot function to take side as an argument.

You'll be able to pass through LEFT or RIGHT and read their respective values.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 130 of 213

 9 # Track encoder state (L,R). Store initial sens_slot() values.
10 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
11 enc_count = [0, 0]

12
13 def check_enc(side):
14 slot = sense_slot(side)

15 if enc_state[side] != slot:
16 # Disc has moved!
17 enc_state[side] = slot
18 # TODO: iterate the count of the side in enc_count

19 return True
20
21 # No movement
22 return False
23
24
25 while True:
26 left_moved = check_enc(LEFT)
27 right_moved = check_enc(RIGHT)
28 if left_moved or right_moved:
29 print(enc_count)

Goals:

Add the parameter side to your function sense_slot().

Define a new function called check_enc(side).

On slot detection, iterate the count of the side in enc_count.

Tools
Found:

list, Variables, Wheel Encoders, Parameters, Arguments, and Returns, Functions, Iterable, Keyword and Positional Arguments,
Constants, Print Function

Solution:

 1 from botcore import *
 2
 3 THRESH = 1000 # Value from your experiments.
 4
 5 def sense_slot(side):
 6 val = enc.read(side)
 7 return val > THRESH
 8
 9 # Track encoder state (L,R). Store initial sens_slot() values.
10 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]

Make enc_state and end_count lists!

You'll be able to easily keep track of the left and right
values by indexing the lists with the LEFT and RIGHT

constants.

Onto your new function, chec_enc(side)!

It has the parameter side, just like sense_slot(side)!
It replaces your code to count disc movement from the previous objective.

In order to iterate the correct value in the array, you'll
need to index it by the side!

enc_count[side] = enc_count[side] + 1

If either wheel's slot state changes, print the enc_count.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 131 of 213

11 enc_count = [0, 0]
12
13 def check_enc(side):
14 slot = sense_slot(side)
15 if enc_state[side] != slot:
16 # Disc has moved!
17 enc_state[side] = slot
18 enc_count[side] = enc_count[side] + 1
19 return True
20
21 # No movement
22 return False
23
24
25 while True:
26 left_moved = check_enc(LEFT)
27 right_moved = check_enc(RIGHT)
28 if left_moved or right_moved:
29 print(enc_count)
30

Quiz 1 - Checkpoint

Question 1: What happens to the variable count when you spin the wheel backwards?

done count increases, same as forwards!

close count stays the same.

close count decreases.

Question 2: How much does count change with a full 360° rotation?

done 40

close 20

close 30

close 80

close 360

Question 3: How many slots are there in the CodeBot's encoder disc?

done 20

close 40

close 30

close 2

Objective 4 - Measuring Distance

Have you ever seen a surveyor walking along with a Measuring Wheel?

They're measuring distances by tracking how far the wheel has turned.
Can you measure real distances with your Wheel Encoders?

Your mission for this step is to measure distance traveled in millimeters!

Around the Wheel in 40 Counts!

You know that 40 counts means the wheel has rotated 360°.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 132 of 213

So the distance the wheel moves across the ground is the same as the circumference of the
wheel.

Grab your ruler!

CodeBot's standard wheels are 66.5mm in diameter.

So the distance around the wheel is approximately:

Concept: Python's math Module

You can't see it, but CodeBot's carrying around a really fancy scientific calculator!

Python provides a very rich set of math operations for your code to use when needed.
And any scientific calculator worth its salt has a button for π !

Rather than defining your own constant to approximate Pi, you should use the one from the Python math module.

import math
WHEEL_DIA = 66.5
WHEEL_CIRC = (math.pi * WHEEL_DIA)

Do the Math

You know that the wheel moves 209 mm for every 40 counts.

Write "mm per count" as a fraction.
If you multiply N counts by that fraction, check out how the units of count cancel out!

Armed with this knowledge, can you create a Measuring Wheel program?

Check the 'Trek!

Modify your program to print the distance in millimeters.

Define constants for:
the wheel diameter (66.5), and
counts per revolution (40).

Use the diameter to calculate the circumference of your wheel.
Define a function counts_to_mm(counts) that returns mm for a given number of counts.
To make it more convenient, reset the count when BTN-0 is pressed.

circumference = 3.14 × 66.5mm ≈ 209mm

D mm = N ⋅ ​counts (
40 counts

209 mm
)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 133 of 213

Run It!

Take your Measuring Wheels for a drive!

Use a ruler or tape measure to verify your results.
Hold the 'bot steady and click BTN-0...
Firmly and slowly push it along the measured course.

Go at least 30 cm and check your accuracy.

The wheel encoders are pretty sensitive, eh?

Your code counts every change!
Try "jiggling" a wheel and watch the millimeters clock by :-)
But CodeBot's straight-line accuracy is pretty impressive!

Your Measuring Wheel is Rocking!

It's about time to get this thing rolling...

CodeTrek:

 1 from botcore import *
 2 import math

 3
 4 THRESH = 1000
 5
 6 def sense_slot(side):
 7 val = enc.read(side)
 8 return val > THRESH
 9
10 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
11 enc_count = [0, 0]
12
13 def check_enc(side):
14 slot = sense_slot(side)
15 if enc_state[side] != slot:
16 # Disc has moved!
17 enc_state[side] = slot
18 enc_count[side] = enc_count[side] + 1
19 return True
20
21 # No movement
22 return False
23
24
25 COUNTS_PER_REV = 40
26 WHEEL_DIA = 66.5 # mm

27 WHEEL_CIRC = # TODO: calculate the wheel cirumference

28
29 def counts_to_mm(count):
30 return count * WHEEL_CIRC / COUNTS_PER_REV

Import the math module to access the math.pi constant!

Add COUNTS_PER_REV and WHEEL_DIA as constants!

Calculate the wheel circumference using the formula in the instructions!

WHEEL_CIRC = (math.pi * WHEEL_DIA)

counts_to_mm takes count as an argument and returns the distance in mm!

You know a full wheel rotation will register 40 counts.
You also know the wheel's circumference!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 134 of 213

31
32 while True:
33 left_moved = check_enc(LEFT)
34 right_moved = check_enc(RIGHT)
35 if left_moved or right_moved:
36 print(enc_count)
37
38 left_dist = counts_to_mm(enc_count[LEFT])
39 right_dist = counts_to_mm(enc_count[RIGHT])

40 print("Left Distance: ", left_dist, "mm")
41 print("Right Distance: ", right_dist, "mm")

42
43 # Reset the count if BTN-0 pressed.
44 if buttons.was_pressed(0):
45 enc_count = [0, 0]

46
47

Goals:

Calculate the wheel circumference and assign it to constant WHEEL_CIRC

Define a new function called counts_to_mm(counts).

Reset the count when BTN-0 is pressed.

Assign the value of counts_to_mm(enc_count[LEFT]) to the variable left_dist and then print it.

Tools Found: Wheel Encoders, Constants, Math Module, Functions, Variables, Print Function, import, Keyword and Positional Arguments

Solution:

 1 from botcore import *
 2 import math
 3
 4 THRESH = 1000
 5
 6 def sense_slot(side):
 7 val = enc.read(side)
 8 return val > THRESH
 9
10 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
11 enc_count = [0, 0]
12
13 def check_enc(side):
14 slot = sense_slot(side)
15 if enc_state[side] != slot:
16 # Disc has moved!
17 enc_state[side] = slot
18 enc_count[side] = enc_count[side] + 1
19 return True
20
21 # No movement
22 return False
23

The rest is simple!

For each of the sides in enc_count, translate the count
to millimeters using counts_to_mm(count)!

Print the resulting translation!

Set enc_count to it's default on BTN-0 press.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 135 of 213

24
25 COUNTS_PER_REV = 40
26 WHEEL_DIA = 66.5 # mm
27 WHEEL_CIRC = (math.pi * WHEEL_DIA)
28
29 def counts_to_mm(count):
30 return count * WHEEL_CIRC / COUNTS_PER_REV
31
32 while True:
33 left_moved = check_enc(LEFT)
34 right_moved = check_enc(RIGHT)
35 if left_moved or right_moved:
36 print(enc_count)
37
38 left_dist = counts_to_mm(enc_count[LEFT])
39 right_dist = counts_to_mm(enc_count[RIGHT])
40 print("Left Distance: ", left_dist, "mm")
41 print("Right Distance: ", right_dist, "mm")
42
43 # Reset the count if BTN-0 pressed.
44 if buttons.was_pressed(0):
45 enc_count = [0, 0]
46
47

Objective 5 - Driving Forward

Oh wait! I just realized... The Wheel Encoders are connected to Motors!!

So the next step should be pretty obvious: Write a function to drive a specified distance.

Drive forward for 50 centimeters
drive(50)

So simple, so elegant!

And now you have the Python + Robotics skills to make it happen.

Check the 'Trek!

Modify your code to implement the Simple and Elegant™ function, drive(cm).

Define a function mm_to_counts(mm) that returns counts for a given distance in millimeters.
Looks a lot like a function you already have!
You'll use this to calculate the count based on requested drive() distance.

Move your while loop into a new function called drive(cm) which moves the 'bot cm centimeters when called.
For now, run() both motors with a constant power of 50%.
Continuously call check_enc() for both sides.
break from loop and stop moving if LEFT or RIGHT wheels have gone >= count.

In your main program:

Just enable the motors and call drive()!
Oh yeah, don't forget to wait for a button-press before moving!

Pro-Tip: Organize your code in sections from top to bottom: imports, constants, functions, global variables, main
program.

This is optional, but it will make your code much more readable!

Run It!

Can you drive() an exact distance?

Try different distances in centimeters.
Is your 'bot going precisely the distance you specify?
Is it going in a straight line?

Python with Robots Mission Content

©2024 Firia Labs Appendix A 136 of 213

Test, Observe, Modify

You're probably already thinking of ways to improve this code!

Does your drive() function tend to overshoot or undershoot the specified distance?
Would it be better or worse to wait until both LEFT and RIGHT wheels are >= count before stopping?
Experiment with the power value you set the motors to as well.

CodeTrek:

 1 from botcore import *
 2 import math
 3
 4 # -- Constants --
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000

 9
10 # -- Functions --
11
12 def counts_to_mm(count):
13 return count * WHEEL_CIRC / COUNTS_PER_REV
14
15 def mm_to_counts(mm):
16 # TODO: return translate mm to counts

17
18 def sense_slot(side):
19 val = enc.read(side)
20 return val > THRESH
21
22 def check_enc(side):
23 slot = sense_slot(side)
24 if enc_state[side] != slot:
25 # Disc has moved!
26 enc_state[side] = slot
27 enc_count[side] = enc_count[side] + 1
28 return True
29
30 # No movement
31 return False
32
33 def drive(cm):
34 # Convert centimeters to counts.
35 count = mm_to_counts(cm * 10)

36
37 # Start moving
38 motors.run(LEFT, 50)
39 motors.run(RIGHT, 50)
40
41 # Keep going until 'count' reached
42 while True:

Move your constants to the top of the file.

Good organization
reduces mistakes!

mm_to_counts(mm) needs to return counts from millimeters!

return mm * COUNTS_PER_REV / WHEEL_CIRC

Translate cm to mm by multiplying by 10!

mm_to_counts(mm) returns the number of counts you need to
drive forward.
You'll know when to stop the motors when counts is equal to
the number of slots detected!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 137 of 213

43 left_moved = check_enc(LEFT)
44 right_moved = check_enc(RIGHT)

45 if left_moved or right_moved:
46 print(enc_count)
47
48 left_dist = counts_to_mm(enc_count[LEFT])
49 right_dist = counts_to_mm(enc_count[RIGHT])
50 print("Left Distance: ", left_dist, "mm")
51 print("Right Distance: ", right_dist, "mm")
52
53 # Are we there yet??
54 if enc_count[LEFT] >= count or enc_count[RIGHT] >= count:
55 break

56
57 # Stop moving
58 motors.run(LEFT, 0)
59 motors.run(RIGHT, 0)
60
61 # -- Global variables --
62 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
63 enc_count = [0, 0]
64
65
66 # -- Main program --
67
68 # Wait for BTN-0. Good robot.
69 while True:
70 if buttons.was_pressed(0):
71 break

72
73 motors.enable(True)

74
75 # Gonna take a centimeter journey...
76 # TODO: drive 50 cm!

77
78

Goals:

Define a function mm_to_counts(mm).

Translate millimeters to counts and return the value from mm_to_counts(mm)

Move the while loop into this new function!

Continuously call check_enc() for both sides.

If the LEFT or RIGHT wheel encoders have sensed
count rotations or more, stop the motors!

Wait for a button press before moving!

Enable your motors before calling drive(cm).

Hold on tight!

Start with 50 centimeters, but feel free to experiment!

drive(50)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 138 of 213

Define a function drive(cm).

Call drive(50).

Tools Found: Wheel Encoders, Motors, Functions, Constants, Loops

Solution:

 1 from botcore import *
 2 import math
 3
 4 # -- Constants --
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000 #@1
 9
10 # -- Functions --
11
12 def counts_to_mm(count):
13 return count * WHEEL_CIRC / COUNTS_PER_REV
14
15 def mm_to_counts(mm):
16 return mm * COUNTS_PER_REV / WHEEL_CIRC
17
18 def sense_slot(side):
19 val = enc.read(side)
20 return val > THRESH
21
22 def check_enc(side):
23 slot = sense_slot(side)
24 if enc_state[side] != slot:
25 # Disc has moved!
26 enc_state[side] = slot
27 enc_count[side] = enc_count[side] + 1
28 return True
29
30 # No movement
31 return False
32
33 def drive(cm):
34 # Convert centimeters to counts.
35 count = mm_to_counts(cm * 10) #@3
36
37 # Start moving
38 motors.run(LEFT, 50)
39 motors.run(RIGHT, 50)
40
41 # Keep going until 'count' reached
42 while True:
43 left_moved = check_enc(LEFT)
44 right_moved = check_enc(RIGHT)
45 if left_moved or right_moved:
46 print(enc_count)
47
48 left_dist = counts_to_mm(enc_count[LEFT])
49 right_dist = counts_to_mm(enc_count[RIGHT])
50 print("Left Distance: ", left_dist, "mm")
51 print("Right Distance: ", right_dist, "mm")
52
53 # Are we there yet??
54 if enc_count[LEFT] >= count or enc_count[RIGHT] >= count:
55 break #@4
56
57 # Stop moving
58 motors.run(LEFT, 0)
59 motors.run(RIGHT, 0)
60
61 # -- Global variables --
62 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
63 enc_count = [0, 0]
64
65
66 # -- Main program --

Python with Robots Mission Content

©2024 Firia Labs Appendix A 139 of 213

67
68 # Wait for BTN-0. Good robot.
69 while True:
70 if buttons.was_pressed(0):
71 break #@5
72
73 motors.enable(True)
74
75 # Gonna take a centimeter journey...
76 drive(50) #@6
77
78

Objective 6 - Repeat the Journey

Your code is good, but as it stands you have to re-start the code or reboot the 'bot each
time you start a new journey!

It would be nice to just press BTN-0 to go again.
That doesn't sound too hard - to the code!

Check the 'Trek!

Modify your code to move the whole # -- Main program -- section into an outer while True: loop.

So rather than ending, your program just loops back to the BTN-0 check again.

(Remember, you can select a block of code and hit TAB to indent it.)

Run It!

Take this code for a test drive!

Does it repeat as expected?

Caution: Bug Alert

Okay, maybe it wasn't that simple!

You're going to need to debug this code.

Start by watching your print() output on the Debug Console.

The first time you run, it works okay.
Observe the count values on the second run.

CodeTrek:

 1 from botcore import *
 2 import math
 3
 4 # -- Constants --
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
10 # -- Functions --
11
12 def counts_to_mm(count):
13 return count * WHEEL_CIRC / COUNTS_PER_REV

Python with Robots Mission Content

©2024 Firia Labs Appendix A 140 of 213

14
15 def mm_to_counts(mm):
16 return mm * COUNTS_PER_REV / WHEEL_CIRC
17
18 def sense_slot(side):
19 val = enc.read(side)
20 return val > THRESH
21
22 def check_enc(side):
23 slot = sense_slot(side)
24 if enc_state[side] != slot:
25 # Disc has moved!
26 enc_state[side] = slot
27 enc_count[side] = enc_count[side] + 1
28 return True
29
30 # No movement
31 return False
32
33 def drive(cm):
34 # Convert centimeters to counts.
35 count = mm_to_counts(cm * 10)
36
37 # Start moving
38 motors.run(LEFT, motor_power[LEFT])
39 motors.run(RIGHT, motor_power[RIGHT])
40
41 # Keep going until 'count' reached
42 while True:
43 left_moved = check_enc(LEFT)
44 right_moved = check_enc(RIGHT)
45 if left_moved or right_moved:
46 print(enc_count)
47
48 left_dist = counts_to_mm(enc_count[LEFT])
49 right_dist = counts_to_mm(enc_count[RIGHT])
50 print("Left Distance: ", left_dist, "mm")
51 print("Right Distance: ", right_dist, "mm")
52
53 # Are we there yet??
54 if enc_count[LEFT] >= count or enc_count[RIGHT] >= count:
55 break
56
57 # Stop moving
58 motors.run(LEFT, 0)
59 motors.run(RIGHT, 0)
60
61 # -- Global variables --
62 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
63 enc_count = [0, 0]
64
65
66 # -- Main program --
67
68 # Outer loop - repeat forever.
69 while True:

70
71 # Wait for BTN-0. Good robot.
72 while True:
73 if buttons.was_pressed(0):
74 break
75
76 motors.enable(True)
77
78 # Gonna take a centimeter journey...
79 drive(50)
80

Add another while loop around the main program!

It'll still wait for BTN-0 to be pressed before running each time!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 141 of 213

81

Goal:

Move the whole # -- Main program -- under an outer while True: loop.

Tools Found: Reboot, Indentation, Debugging

Solution:

 1 from botcore import *
 2 import math
 3
 4 # -- Constants --
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
10 # -- Functions --
11
12 def counts_to_mm(count):
13 return count * WHEEL_CIRC / COUNTS_PER_REV
14
15 def mm_to_counts(mm):
16 return mm * COUNTS_PER_REV / WHEEL_CIRC
17
18 def sense_slot(side):
19 val = enc.read(side)
20 return val > THRESH
21
22 def check_enc(side):
23 slot = sense_slot(side)
24 if enc_state[side] != slot:
25 # Disc has moved!
26 enc_state[side] = slot
27 enc_count[side] = enc_count[side] + 1
28 return True
29
30 # No movement
31 return False
32
33 def drive(cm):
34 # Convert centimeters to counts.
35 count = mm_to_counts(cm * 10)
36
37 # Start moving
38 motors.run(LEFT, motor_power[LEFT])
39 motors.run(RIGHT, motor_power[RIGHT])
40
41 # Keep going until 'count' reached
42 while True:
43 left_moved = check_enc(LEFT)
44 right_moved = check_enc(RIGHT)
45 if left_moved or right_moved:
46 print(enc_count)
47
48 left_dist = counts_to_mm(enc_count[LEFT])
49 right_dist = counts_to_mm(enc_count[RIGHT])
50 print("Left Distance: ", left_dist, "mm")
51 print("Right Distance: ", right_dist, "mm")
52
53 # Are we there yet??
54 if enc_count[LEFT] >= count or enc_count[RIGHT] >= count:
55 break
56
57 # Stop moving
58 motors.run(LEFT, 0)
59 motors.run(RIGHT, 0)

Hit TAB on your keyboard to quickly indent selected code!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 142 of 213

60
61 # -- Global variables --
62 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
63 enc_count = [0, 0]
64
65
66 # -- Main program --
67
68 # Outer loop - repeat forever.
69 while True:
70
71 # Wait for BTN-0. Good robot.
72 while True:
73 if buttons.was_pressed(0):
74 break
75
76 motors.enable(True)
77
78 # Gonna take a centimeter journey...
79 drive(50)
80
81

Objective 7 - Repeat the Journey 2

No wonder it doesn't work. The 'bot thinks it's already gone the distance!

Okay, so on each re-start you need a way to reset the starting line!

One option is to set enc_count back to [0, 0].
That would work, but then you'd lose the "total distance traveled" - which might be nice
to have at some point.

Another option is to save the starting count each time drive() is called.
To check how far you've moved, just subtract enc_count[xx] - start_count[xx].

Take the second option: Save the start_count[] at the beginning of the drive() function.

To do that, you need to copy the contents of the list enc_count.

Concept

When copying a list you might be tempted to simply write:

This will NOT make a new list!
start_count = enc_count

But that will only make a new variable start_count that references the exact same enc_count list you already had!

In Python, normal assignment doesn't copy objects like lists.
It only gets you a reference to the existing object.

That means if enc_count[LEFT] changes, so does start_count[LEFT].
They're always equal, since they both refer to the same list!

To copy a list :

Use the copy() method!
start_count = enc_count.copy()

Check the 'Trek!

Modify your code to save the starting line.

These changes are all inside the drive() function.

At the beginning of the function, copy the enc_count to a new list called start_count.
If left_moved or right_moved then...

Calculate the new count offsets from the starting line.
You might call them count_left and count_right.

Use those new count offsets instead of enc_count[LEFT] and enc_count[RIGHT] when you print and check the
distances.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 143 of 213

Run It!

Time for another test drive.

Hopefully your results are better this time!
Can you make multiple journeys just by pressing BTN-0 again?

Test Your Machine!

Which of your motors is faster?

They're usually not exactly the same!
Perhaps you could write code to make them run the same speed, though...

Notice any other problems?

You may see BTN-0 trigger an occasional double-trip!
Ah, it's your old friend, contact bounce.

You already know about debouncing buttons!

Add a call to buttons.was_pressed(0) some time after the first click to clear any extras that occur.
Rather than adding a sleep() delay, you can just discard any button presses that happen during the journey.

You can add the debounce after your call to drive(xx), or just above your button-check loop:

while True:
 # Wait for BTN-0. Good robot.
 buttons.was_pressed(0) # debounce
 while True:
 if buttons.was_pressed(0):
 break

You, my friend, are going to go far!

CodeTrek:

 1 from botcore import *
 2 import math
 3
 4 # -- Constants --
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
10 # -- Functions --
11
12 def counts_to_mm(count):
13 return count * WHEEL_CIRC / COUNTS_PER_REV
14
15 def mm_to_counts(mm):
16 return mm * COUNTS_PER_REV / WHEEL_CIRC
17
18 def sense_slot(side):
19 val = enc.read(side)
20 return val > THRESH
21
22 def check_enc(side):
23 slot = sense_slot(side)
24 if enc_state[side] != slot:
25 # Disc has moved!
26 enc_state[side] = slot
27 enc_count[side] = enc_count[side] + 1
28 return True
29
30 # No movement
31 return False
32
33 def drive(cm):

Python with Robots Mission Content

©2024 Firia Labs Appendix A 144 of 213

34 # Convert centimeters to counts.
35 count = mm_to_counts(cm * 10)
36
37 # Save the starting line.
38 start_count = # TODO: copy enc_count

39
40 # Start moving
41 motors.run(LEFT, 50)
42 motors.run(RIGHT, 50)
43
44 # Keep going until 'count' reached
45 while True:
46 left_moved = check_enc(LEFT)
47 right_moved = check_enc(RIGHT)
48 if left_moved or right_moved:
49 print(enc_count)
50
51
52 # Calculate distance from starting line
53 count_left = enc_count[LEFT] - start_count[LEFT]
54 count_right = enc_count[RIGHT] - start_count[RIGHT]

55
56
57 left_dist = counts_to_mm(count_left)
58 right_dist = counts_to_mm(count_right)

59 print("Left Distance: ", left_dist, "mm")
60 print("Right Distance: ", right_dist, "mm")
61
62 # Are we there yet??
63 if count_left >= count or count_right >= count:
64 break

65
66 # Stop moving
67 motors.run(LEFT, 0)
68 motors.run(RIGHT, 0)
69
70 # -- Global variables --
71 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
72 enc_count = [0, 0]
73
74
75 # -- Main program --
76
77 # Outer loop - repeat forever.
78 while True:
79
80 # Wait for BTN-0. Good robot.
81 while True:
82 if buttons.was_pressed(0):
83 break
84
85 motors.enable(True)

At the beginning of a drive(cm) call, create a copy of the enc_count list!

start_count = enc_count doesn't make a new copy, it just references the already existing list!
Make a copy using enc_count.copy().

start_count = enc_count.copy()

Calculate the distance from the position your 'bot was in when drive(cm)
was called by subtracting the 'bot's current position from it's starting position!

Substitute enc_count[LEFT] and enc_count[RIGHT] with count_left and count_right!

Don't forget to substitute them here too!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 145 of 213

86
87 # Gonna take a centimeter journey...
88 drive(50)
89
90

Goals:

Assign the variable start_count as a copy of enc_count using the list.copy() function.

Assign the variable count_left as a subtraction of enc_count[LEFT] and start_count[LEFT].

Tools Found: list, Variables, Motors

Solution:

 1 from botcore import *
 2 import math
 3
 4 # -- Constants --
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
10 # -- Functions --
11
12 def counts_to_mm(count):
13 return count * WHEEL_CIRC / COUNTS_PER_REV
14
15 def mm_to_counts(mm):
16 return mm * COUNTS_PER_REV / WHEEL_CIRC
17
18 def sense_slot(side):
19 val = enc.read(side)
20 return val > THRESH
21
22 def check_enc(side):
23 slot = sense_slot(side)
24 if enc_state[side] != slot:
25 # Disc has moved!
26 enc_state[side] = slot
27 enc_count[side] = enc_count[side] + 1
28 return True
29
30 # No movement
31 return False
32
33 def drive(cm):
34 # Convert centimeters to counts.
35 count = mm_to_counts(cm * 10)
36
37 # Save the starting line.
38 start_count = enc_count.copy()
39
40 # Start moving
41 motors.run(LEFT, 50)
42 motors.run(RIGHT, 50)
43
44 # Keep going until 'count' reached
45 while True:
46 left_moved = check_enc(LEFT)
47 right_moved = check_enc(RIGHT)
48 if left_moved or right_moved:
49 print(enc_count)
50
51
52 # Calculate distance from starting line
53 count_left = enc_count[LEFT] - start_count[LEFT]
54 count_right = enc_count[RIGHT] - start_count[RIGHT]
55
56
57 left_dist = counts_to_mm(count_left)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 146 of 213

58 right_dist = counts_to_mm(count_right)
59 print("Left Distance: ", left_dist, "mm")
60 print("Right Distance: ", right_dist, "mm")
61
62 # Are we there yet??
63 if count_left >= count or count_right >= count:
64 break
65
66 # Stop moving
67 motors.run(LEFT, 0)
68 motors.run(RIGHT, 0)
69
70 # -- Global variables --
71 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
72 enc_count = [0, 0]
73
74
75 # -- Main program --
76
77 # Outer loop - repeat forever.
78 while True:
79
80 # Wait for BTN-0. Good robot.
81 while True:
82 if buttons.was_pressed(0):
83 break
84
85 motors.enable(True)
86
87 # Gonna take a centimeter journey...
88 drive(50)
89
90

Objective 8 - Speed-o-Meter

Get your 'bot Up to Speed!

Now that you can measure distance, the next step is to measure your speed.

Why would you want to do that?

To drive with consistent speed, regardless of battery level or changing terrain.
Stop using constant % power and start Sensing your Speed!

To drive in a straight line.
You'll need to make both wheels go exactly the same speed.

Your first step is to write code to monitor and display the speed of each wheel.

What's CodeBot's top speed?

...would that be in: Miles per Hour?, Kilometers per Hour?, Feet per Second?, Centimeters per Second?
Actually all of those are valid units of speed.

Replacing the word "per" with division shows you the equation for speed:

You've got the distance part covered with the code you just finished.

Now you just have to keep track of time as your 'bot moves!

Just in Time

You've been using Python's time module to access the sleep() function. But it has much more to offer!

Your while loop is calling check_enc() very rapidly, every time through the loop.
Is there a way to quickly check how much time has elapsed also?
Yes! Check out the ticks_ms() function in the time module.
Use it to capture the current time-tick count in milliseconds.

Ex: - measure milliseconds between t_start and t_stop.

speed = ​

time
distance

Python with Robots Mission Content

©2024 Firia Labs Appendix A 147 of 213

import time

t_start = time.ticks_ms()
Do some stuff that takes time...
t_stop = time.ticks_ms()

t_diff = time.ticks_diff(t_stop, t_start)
print("That took ", t_diff, " milliseconds!")

Algorithm for Speed Sensing

1. Use ticks_ms() to check the elapsed time.
2. Use global variables last_ms and last_count to save millisecond and encoder counts.
3. Every 100ms interval, do the speed calculation:
4. Calculate distance based on current enc_count minus last_count.
5. Calculate
6. Use a global list to store the current cur_speed[LEFT] and cur_speed[RIGHT].

Keep the speed values in "counts per second".
...you can convert counts to distance later.

Check the 'Trek!

You'll be defining two new functions

def update_speed(interval_ms):
Checks the elapsed time interval and updates the global cur_speed list.

def print_speed_cps():
Converts cur_speed from "counts per second" to "cm/s" and prints it.

Do this in two stages.

For Stage-1, don't worry about calculating the speed. Just get the functions set up, and organize your code a bit.

1. Modify your drive() function by moving the 4 lines that print the distance to the end.

Print "Total distance traveled."
Remember you can select a block of lines and use editor shortcuts to cut and paste it where you want it.
You can use SHIFT + TAB to unindent a block of code too!

2. Add a call to update_speed(100) in your drive() function.

Just before the if left_moved or right_moved: inside your while True: loop.

3. Define a new function print_speed_cps().

In Stage-2 this will print "centimeters per second..."
For now just print the current ticks_ms() count.
This will be called every 100ms.

4. Define a new function update_speed(interval_ms).

No need to calculate speed yet.
For now, this function's job is just to call print_speed_cps() every 100ms.
Check elapsed time: t_ms = ticks_diff(ticks_ms(), last_ms).
Don't forget to declare the last_ms as global in your function.

...and to set it to the current ticks_ms() value at the start of the next interval!

Run It!

Watch the Debug Console as you run this.

You should see the ms ticks count printed every 100ms.
If things are working as planned, those counts should be in steps of 100!

ticks_ms() uses very accurate hardware-based timers. But your code can branch based on check_enc(), so you
may see the ticks count skip a few milliseconds occasionally.

CodeTrek:

speed = ​100ms
distance

Python with Robots Mission Content

©2024 Firia Labs Appendix A 148 of 213

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff

 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
 10 def counts_to_mm(count):
 11 return count * WHEEL_CIRC / COUNTS_PER_REV
 12
 13 def mm_to_counts(mm):
 14 return mm * COUNTS_PER_REV / WHEEL_CIRC
 15
 16 def sense_slot(side):
 17 val = enc.read(side)
 18 return val > THRESH
 19
 20 def check_enc(side):
 21 slot = sense_slot(side)
 22 if enc_state[side] != slot:
 23 # Disc has moved!
 24 enc_state[side] = slot
 25 enc_count[side] = enc_count[side] + 1
 26 return True
 27
 28 # No movement
 29 return False
 30
 31 def drive(cm):
 32 # Convert centimeters to counts.
 33 count = mm_to_counts(cm * 10)
 34
 35 # Save the starting line.
 36 start_count = enc_count.copy()
 37
 38 # Start moving
 39 motors.run(LEFT, 50)
 40 motors.run(RIGHT, 50)
 41
 42 # Keep going until 'count' reached
 43 while True:
 44 left_moved = check_enc(LEFT)
 45 right_moved = check_enc(RIGHT)
 46
 47 update_speed(100)

 48
 49 if left_moved or right_moved:
 50 # print(enc_count)
 51
 52 # Calculate distance from starting line
 53 count_left = enc_count[LEFT] - start_count[LEFT]
 54 count_right = enc_count[RIGHT] - start_count[RIGHT]
 55
 56 # Are we there yet??
 57 if count_left >= count or count_right >= count:
 58 break
 59
 60 # Stop moving
 61 motors.run(LEFT, 0)
 62 motors.run(RIGHT, 0)
 63
 64 # Print total distance traveled
 65 left_dist = counts_to_mm(count_left)

Import ticks_ms and ticks_diff from the time module!

Add a call to update_speed().

You'll define this new function shortly!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 149 of 213

 66 right_dist = counts_to_mm(count_right)
 67 print("Left Distance: ", left_dist, "mm")
 68 print("Right Distance: ", right_dist, "mm")
#@1
 69
 70 def update_speed(interval_ms):
 71 # Update speed at given interval.
 72 global last_ms

 73
 74 # Check if interval has elapsed.
 75 t_ms = ticks_diff(ticks_ms(), last_ms)

 76 if t_ms >= interval_ms:
 77 last_ms = ticks_ms()
 78 print_speed_cps()

 79
 80 def print_speed_cps():
 81 ticks = # TODO: assign the current ticks count

 82 print("ticks = ", ticks)
 83
 84 # --- Main program ---
 85 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
 86 enc_count = [0, 0]
 87 last_ms = 0

 88
 89 while True:
 90 # Wait for BTN-0. Good robot.
 91 buttons.was_pressed(0) # debounce
 92 while True:
 93 if buttons.was_pressed(0):
 94 break
 95
 96 motors.enable(True)
 97
 98 # Go forth!
 99 drive(30)

Goals:

Define a new function print_speed_cps()

Define a new function update_speed(interval_ms)

Define update_speed(interval_ms).

Declare last_ms as a global, you'll be altering it in this function!

t_ms is a measurement of the amount of time that's elapsed since last_ms.

tick_diff(ticks1, ticks2) returns the difference between two ticks!

If more time has elapsed than the interval_ms:

Update last_ms to now.
Call your print function!

For now, print_speed_cps() just needs to print the current ticks.

ticks = ticks_ms()

Initialize a new global variable, last_ms!

You'll use this to keep track of the last time your speed
was reported.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 150 of 213

Call update_speed(100) in your drive(cm) function.

Assign the variable t_ms as the value returned by ticks_diff(ticks_ms(), last_ms)

Tools Found: Time Module, Locals and Globals, list, Functions, Editor Shortcuts, Branching, Variables, Print Function, import, Timing

Solution:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
 10 def counts_to_mm(count):
 11 return count * WHEEL_CIRC / COUNTS_PER_REV
 12
 13 def mm_to_counts(mm):
 14 return mm * COUNTS_PER_REV / WHEEL_CIRC
 15
 16 def sense_slot(side):
 17 val = enc.read(side)
 18 return val > THRESH
 19
 20 def check_enc(side):
 21 slot = sense_slot(side)
 22 if enc_state[side] != slot:
 23 # Disc has moved!
 24 enc_state[side] = slot
 25 enc_count[side] = enc_count[side] + 1
 26 return True
 27
 28 # No movement
 29 return False
 30
 31 def drive(cm):
 32 # Convert centimeters to counts.
 33 count = mm_to_counts(cm * 10)
 34
 35 # Save the starting line.
 36 start_count = enc_count.copy()
 37
 38 # Start moving
 39 motors.run(LEFT, 50)
 40 motors.run(RIGHT, 50)
 41
 42 # Keep going until 'count' reached
 43 while True:
 44 left_moved = check_enc(LEFT)
 45 right_moved = check_enc(RIGHT)
 46
 47 # Update speed every 100ms
 48 update_speed(100)
 49
 50 if left_moved or right_moved:
 51 # print(enc_count)
 52
 53 # Calculate distance from starting line
 54 count_left = enc_count[LEFT] - start_count[LEFT]
 55 count_right = enc_count[RIGHT] - start_count[RIGHT]
 56
 57 # Are we there yet??
 58 if count_left >= count or count_right >= count:
 59 break
 60
 61 # Stop moving
 62 motors.run(LEFT, 0)
 63 motors.run(RIGHT, 0)
 64
 65 # Print total distance traveled
 66 left_dist = counts_to_mm(count_left)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 151 of 213

 67 right_dist = counts_to_mm(count_right)
 68 print("Left Distance: ", left_dist, "mm")
 69 print("Right Distance: ", right_dist, "mm")
 70
 71 def update_speed(interval_ms):
 72 # Update speed at given interval.
 73 global last_ms
 74
 75 # Check if interval has elapsed.
 76 t_ms = ticks_diff(ticks_ms(), last_ms)
 77 if t_ms >= interval_ms:
 78 last_ms = ticks_ms()
 79 print_speed_cps()
 80
 81 def print_speed_cps():
 82 # Print current speed in cm per second.
 83 print("ticks = ", ticks_ms())
 84
 85 # --- Main program ---
 86 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
 87 enc_count = [0, 0]
 88 last_ms = 0
 89
 90 while True:
 91 # Wait for BTN-0. Good robot.
 92 buttons.was_pressed(0) # debounce
 93 while True:
 94 if buttons.was_pressed(0):
 95 break
 96
 97 motors.enable(True)
 98
 99 # Go forth!
100 drive(30)

Objective 9 - Speed-o-Meter 2

Ready for the next Design Iteration?

Professional code is usually developed using an iterative process like this.

Iterate just means to do something repeatedly.
You're taking small steps that build to the whole solution.

Check the 'Trek!

Stage-2 - Speed Indeed!

This stage completes your Speedometer!

1. Define new global variables: last_count = [0, 0] and cur_speed = [0, 0].

2. Write the code for your update_speed() function so at every interval it:

Calculates distance traveled = enc_count[xx] - last_count[xx] for each wheel.
Resets last_count = enc_count.copy().
Calculates speed in "counts per second" for each wheel.

You'll need to convert milliseconds to seconds:

Updates the global cur_speed[].

3. Write the code for your print_speed_cps() function.

Use the global cur_speed[] which is in "counts per second".
Your counts_to_mm() function will convert that to a real distance!
Then remember to convert mm to cm, and print "cm/s".
Print it!

t ​ = t ​ ⋅ ​sec ms 1000ms
1sec

Python with Robots Mission Content

©2024 Firia Labs Appendix A 152 of 213

Run It!

Give this a try, and check your speed!

Watch the console.
Does the speed shown match your expectations?

Divide the "Total distance traveled" by the time it takes for a run to get an approximate speed for comparison.
Test this with different motor power values.
Try putting a little "friction" on one wheel, while the other is free.

Make sure you see the slower wheel print lower speeds!

CodeTrek:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
 10 def counts_to_mm(count):
 11 return count * WHEEL_CIRC / COUNTS_PER_REV
 12
 13 def mm_to_counts(mm):
 14 return mm * COUNTS_PER_REV / WHEEL_CIRC
 15
 16 def sense_slot(side):
 17 val = enc.read(side)
 18 return val > THRESH
 19
 20 def check_enc(side):
 21 slot = sense_slot(side)
 22 if enc_state[side] != slot:
 23 # Disc has moved!
 24 enc_state[side] = slot
 25 enc_count[side] = enc_count[side] + 1
 26 return True
 27
 28 # No movement
 29 return False
 30
 31 def drive(cm):
 32 # Convert centimeters to counts.
 33 count = mm_to_counts(cm * 10)
 34
 35 # Save the starting line.
 36 start_count = enc_count.copy()
 37
 38 # Start moving
 39 motors.run(LEFT, 50)
 40 motors.run(RIGHT, 50)
 41
 42 # Keep going until 'count' reached
 43 while True:
 44 left_moved = check_enc(LEFT)
 45 right_moved = check_enc(RIGHT)
 46
 47 # Update speed every 100ms
 48 update_speed(100)
 49
 50 if left_moved or right_moved:
 51 # print(enc_count)
 52
 53 # Calculate distance from starting line
 54 count_left = enc_count[LEFT] - start_count[LEFT]
 55 count_right = enc_count[RIGHT] - start_count[RIGHT]
 56
 57 # Are we there yet??
 58 if count_left >= count or count_right >= count:
 59 break
 60

Python with Robots Mission Content

©2024 Firia Labs Appendix A 153 of 213

 61 # Stop moving
 62 motors.run(LEFT, 0)
 63 motors.run(RIGHT, 0)
 64
 65 # Print total distance traveled
 66 left_dist = counts_to_mm(count_left)
 67 right_dist = counts_to_mm(count_right)
 68 print("Left Distance: ", left_dist, "mm")
 69 print("Right Distance: ", right_dist, "mm")
 70
 71
 72 def update_speed(interval_ms):
 73 # Update speed at given interval.
 74 global last_ms, last_count

 75
 76 # Check if interval has elapsed.
 77 t_ms = ticks_diff(ticks_ms(), last_ms)
 78 if t_ms >= interval_ms:
 79 # Calculate distance traveled.
 80 d_left = enc_count[LEFT] - last_count[LEFT]
 81 d_right = enc_count[RIGHT] - last_count[RIGHT]

 82 # Save state for next time.
 83 last_ms = ticks_ms()
 84 last_count = # TODO: make a copy of enc_count

 85 # Calculate speed
 86 t_sec = t_ms / 1000 # convert to seconds
 87 cur_speed[LEFT] = d_left / t_sec
 88 cur_speed[RIGHT] = d_right / t_sec

 89 print_speed_cps()
 90
 91 def print_speed_cps():
 92 # Print current speed in cm per second.
 93 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
 94 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10

 95 print("Left: ", cps_left, "cm/s")
 96 print("Right: ", cps_right, "cm/s")

 97

Add last_count as a global.

Calculate the distance travelled since the last interval.

last_count gets updated every interval, comparing it against
the current count (env_count[side])
will tell you the distance travelled in the current interval!

Make a copy of enc_count!

You've done this in previous objectives, if you're confused
go back and review!

Calculate the current counts per second by dividing the distance travelled
by the interval!

Reminder, speed = ​time
distance

Translate counts per second into centimeters per second
 by using your counts_to_mm(counts) function, then
dividing by 10 to get cm!

Print it!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 154 of 213

 98
 99 # --- Main program ---
100 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
101 enc_count = [0, 0]
102 last_ms = 0
103 last_count = [0, 0]
104 cur_speed = [0, 0] # Current speed in "counts per second"

105
106
107 while True:
108 # Wait for BTN-0. Good robot.
109 buttons.was_pressed(0) # debounce
110 while True:
111 if buttons.was_pressed(0):
112 break
113
114 motors.enable(True)
115
116 # Go forth!
117 drive(30)

Goals:

Define new global variables last_count and cur_speed as [0, 0].

Assign the variable last_count as a copy of enc_count using the list.copy function.

Assign the variable cps_left as the cm per second using counts_to_mm(cur_speed[LEFT]) / 10

Tools Found: Locals and Globals, Print Function, Variables, Functions

Solution:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
 10 def counts_to_mm(count):
 11 return count * WHEEL_CIRC / COUNTS_PER_REV
 12
 13 def mm_to_counts(mm):
 14 return mm * COUNTS_PER_REV / WHEEL_CIRC
 15
 16 def sense_slot(side):
 17 val = enc.read(side)
 18 return val > THRESH
 19
 20 def check_enc(side):
 21 slot = sense_slot(side)
 22 if enc_state[side] != slot:
 23 # Disc has moved!
 24 enc_state[side] = slot
 25 enc_count[side] = enc_count[side] + 1
 26 return True
 27
 28 # No movement
 29 return False
 30
 31 def drive(cm):
 32 # Convert centimeters to counts.

Instantiate two new variables:

last_count will be used similarly to start_count!
cur_speed will be used to store the... current speed!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 155 of 213

 33 count = mm_to_counts(cm * 10)
 34
 35 # Save the starting line.
 36 start_count = enc_count.copy()
 37
 38 # Start moving
 39 motors.run(LEFT, 50)
 40 motors.run(RIGHT, 50)
 41
 42 # Keep going until 'count' reached
 43 while True:
 44 left_moved = check_enc(LEFT)
 45 right_moved = check_enc(RIGHT)
 46
 47 # Update speed every 100ms
 48 update_speed(100)
 49
 50 if left_moved or right_moved:
 51 # print(enc_count)
 52
 53 # Calculate distance from starting line
 54 count_left = enc_count[LEFT] - start_count[LEFT]
 55 count_right = enc_count[RIGHT] - start_count[RIGHT]
 56
 57 # Are we there yet??
 58 if count_left >= count or count_right >= count:
 59 break
 60
 61 # Stop moving
 62 motors.run(LEFT, 0)
 63 motors.run(RIGHT, 0)
 64
 65 # Print total distance traveled
 66 left_dist = counts_to_mm(count_left)
 67 right_dist = counts_to_mm(count_right)
 68 print("Left Distance: ", left_dist, "mm")
 69 print("Right Distance: ", right_dist, "mm")
 70
 71
 72 def update_speed(interval_ms):
 73 # Update speed at given interval.
 74 global last_ms, last_count
 75
 76 # Check if interval has elapsed.
 77 t_ms = ticks_diff(ticks_ms(), last_ms)
 78 if t_ms >= interval_ms:
 79 # Calculate distance traveled.
 80 d_left = enc_count[LEFT] - last_count[LEFT]
 81 d_right = enc_count[RIGHT] - last_count[RIGHT]
 82 # Save state for next time.
 83 last_ms = ticks_ms()
 84 last_count = enc_count.copy()
 85 # Calculate speed
 86 t_sec = t_ms / 1000 # convert to seconds
 87 cur_speed[LEFT] = d_left / t_sec
 88 cur_speed[RIGHT] = d_right / t_sec
 89 print_speed_cps()
 90
 91 def print_speed_cps():
 92 # Print current speed in cm per second.
 93 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
 94 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
 95 print("Left: ", cps_left, "cm/s")
 96 print("Right: ", cps_right, "cm/s")
 97
 98
 99 # --- Main program ---
100 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
101 enc_count = [0, 0]
102 last_ms = 0
103 last_count = [0, 0]
104 cur_speed = [0, 0] # Current speed in "counts per second"
105
106
107 while True:
108 # Wait for BTN-0. Good robot.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 156 of 213

109 buttons.was_pressed(0) # debounce
110 while True:
111 if buttons.was_pressed(0):
112 break
113
114 motors.enable(True)
115
116 # Go forth!
117 drive(30)

Objective 10 - Cruise Control

This step is going to be a breeze!

Wouldn't it be nice to tell your 'bot the speed you want to go and have it automatically
maintain that speed, like the cruise control in a car?

Up to this point changing speed has meant experimenting with % power settings for
the motors.
But now, with your new speedometer capability, you can automate that!

Process Control System

Your cruise control code will use a fundamental engineering concept that powers a lot of
the modern technology you depend on every day.

Closed Loop Control automates control of a System by sensing the Output state and
comparing it to the desired state (Input). A Feedback loop continuously adjusts the
System to keep the error (difference between Input and Output) close to zero.

Input → Desired Speed
System → Motors
Output → Actual Speed
Feedback → Wheel Encoders
Disturbance → Friction, terrain, etc.

Your Code is "Open Loop!"

Right now you're sensing the speed, but your code is not using it to adjust the power.

Any "Disturbance" that happens will affect the Output (speed).
And your Input in raw % power is only loosely related to the Output speed.

CodeBot Cruise Control

This is the control system you'll be coding.

You're already sensing the cur_speed.
For Input how about: drive(distance, speed) ?
Your Feedback loop will calculate the error:

Output and Input are speeds.
 is a constant you choose to set how strong the feedback is.

Feedback with Code

Your feedback loop needs to measure the error between Input and Output, and feed it back to the System.

Input → target_speed.
Output → cur_speed[xx].
System → power[xx] to the motors.

Ex: Code to apply feedback for LEFT side.

err = (Input − Output) ⋅ F ​pwr

F ​pwr

Python with Robots Mission Content

©2024 Firia Labs Appendix A 157 of 213

Calculate: err = (Input - Output) * Fpwr
err = (target_speed - cur_speed[LEFT]) * FEEDBACK_PWR

Apply feedback to System (adjust motor power)
power[LEFT] = power[LEFT] + err
motors.run(LEFT, power[LEFT])

Consider how the code above works when your 'bot is going slower than the desired target_speed:

target_speed > cur_speed[LEFT] so err will be positive.
Which means power to the motors will increase!

Ready to Code this?

Relax! You can implement this with just a few more lines of Python code!

Check the 'Trek!

Modify your code as follows:

1. Define new global variables: target_speed = 0 and power = [0, 0].
2. Add a second parameter speed to your drive() function.

This will be in units of "centimeters per second" (cm/s).
3. In drive() convert speed to "counts per second".

Save this value in global target_speed to compare with cur_speed[xx] in your feedback loop.
4. Remove the # Start moving code from drive().

Control of the motors will be handled in a new function.
5. Define a new function def control_speed(side): to implement your feedback.

Calculate err = (target_speed - cur_speed[side]) * FEEDBACK_PWR
Start with FEEDBACK_PWR = 0.1 to translate speed error to power correction.
Adjust power[side] based on err, and set motors.run(side, power[side]).
Keep power[side] in range of ±100%.

6. Call the control_speed() for LEFT and RIGHT sides from your update_speed() function.
Just before the call to print_speed_cps() is a good place to invoke it.

Run It!

Okay, give your Cruise Control a go!

Try longer distance runs.
Test it with slow and fast speeds!

Find your robot's limits!

Caution: Quirky Code Note

My code has a quirk. Okay, you might even call it a bug!

After the first run, my code remembers the power it was using before!
That can make it lurch forward, instead of ramping up the speed smoothly like the first time.

You can ignore this bug for now - you'll fix it in the next step!

Testing a Disturbance to your Control System

Add a line of code to show the motor % power level while the 'bot is running.

Ex: - add just before calling print_speed_cps()

 ...
 control_speed(LEFT)
 control_speed(RIGHT)
 print("Power: ", power)
 print_speed_cps()

Set your code for a long, slow cruise like: drive(100, 10).

Python with Robots Mission Content

©2024 Firia Labs Appendix A 158 of 213

Hold your 'bot and watch the Debug Console when it runs.
If you add friction to one wheel, do you see the motor power increase to correct the error?
See your code work hard to achieve the target_speed ?
When you remove the friction, does the power back off?

CodeTrek:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.

 10
 11 def counts_to_mm(count):
 12 return count * WHEEL_CIRC / COUNTS_PER_REV
 13
 14 def mm_to_counts(mm):
 15 return mm * COUNTS_PER_REV / WHEEL_CIRC
 16
 17 def sense_slot(side):
 18 val = enc.read(side)
 19 return val > THRESH
 20
 21 def check_enc(side):
 22 slot = sense_slot(side)
 23 if enc_state[side] != slot:
 24 # Disc has moved!
 25 enc_state[side] = slot
 26 enc_count[side] = enc_count[side] + 1
 27 return True
 28
 29 # No movement
 30 return False
 31
 32 def drive(cm, speed):

 33 global target_speed
 34
 35 # Convert centimeters to counts.
 36 count = mm_to_counts(cm * 10)
 37 target_speed = mm_to_counts(speed * 10)

 38
 39 # Save the starting line.
 40 start_count = enc_count.copy()
 41
 42 # [Removed motors.run() "start moving" code]

Initialize constant FEEDBACK_PWR.

You'll use it to control the rate that
speed error is translated to power correction.

Add speed to your drive function.

speed is just your target_speed but in centimeters per second!

Calculate and set the global variable target_speed.

Convert speed to millimeters by multiplying by 10.

Remove your "start moving" code, you'll control the motors later with your
new function, control_speed.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 159 of 213

 43
 44 # Keep going until 'count' reached
 45 while True:
 46 left_moved = check_enc(LEFT)
 47 right_moved = check_enc(RIGHT)
 48
 49 # Update speed every 100ms
 50 update_speed(100)
 51
 52 if left_moved or right_moved:
 53 # print(enc_count)
 54
 55 # Calculate distance from starting line
 56 count_left = enc_count[LEFT] - start_count[LEFT]
 57 count_right = enc_count[RIGHT] - start_count[RIGHT]
 58
 59 # Are we there yet??
 60 if count_left >= count or count_right >= count:
 61 break
 62
 63 # Stop moving
 64 motors.run(LEFT, 0)
 65 motors.run(RIGHT, 0)
 66
 67 # Print total distance traveled
 68 left_dist = counts_to_mm(count_left)
 69 right_dist = counts_to_mm(count_right)
 70 print("Left Distance: ", left_dist, "mm")
 71 print("Right Distance: ", right_dist, "mm")
 72
 73 def update_speed(interval_ms):
 74 # Update speed at given interval.
 75 global last_ms, last_count
 76
 77 # Check if interval has elapsed.
 78 t_ms = ticks_diff(ticks_ms(), last_ms)
 79 if t_ms >= interval_ms:
 80 # Calculate distance traveled.
 81 d_left = enc_count[LEFT] - last_count[LEFT]
 82 d_right = enc_count[RIGHT] - last_count[RIGHT]
 83 # Save state for next time.
 84 last_ms = ticks_ms()
 85 last_count = enc_count.copy()
 86 # Calculate speed
 87 t_sec = t_ms / 1000 # convert to seconds
 88 cur_speed[LEFT] = d_left / t_sec
 89 cur_speed[RIGHT] = d_right / t_sec
 90 control_speed(LEFT)
 91 control_speed(RIGHT)

 92 print_speed_cps()
 93
 94 def print_speed_cps():
 95 # Print current speed in cm per second.
 96 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
 97 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
 98 print("Left: ", cps_left, "cm/s")
 99 print("Right: ", cps_right, "cm/s")
100
101 def control_speed(side):
102 # Set motor power to reach target speed.
103 err = # TODO: Calculate err = (Input - Output) * Fpwr

104 pwr = power[side] + err

Call your new function control_speed(side) for each side
from your update_speed(interval_ms) function.

Your feedback loop will be updated every interval_ms.

err is the value you'll feed back into your system!

target_speed is the input and cur_speed[side] is the output!
err = (target_speed - cur_speed[side]) * FEEDBACK_PWR

Python with Robots Mission Content

©2024 Firia Labs Appendix A 160 of 213

105
106 if pwr > 100:
107 pwr = 100
108 elif pwr < -100:
109 pwr = -100

110
111 power[side] = pwr
112 motors.run(side, pwr)

113
114
115
116 # --- Main program ---
117 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
118 enc_count = [0, 0]
119 last_ms = 0
120 last_count = [0, 0]
121 cur_speed = [0, 0] # Current speed in "counts per second"
122 target_speed = 0 # Desired speed in "counts per second"
123 power = [0, 0]

124
125 while True:
126 # Wait for BTN-0. Good robot.
127 buttons.was_pressed(0) # debounce
128 while True:
129 if buttons.was_pressed(0):
130 break
131
132 motors.enable(True)
133
134 # Drive (dist=cm, speed=cm/s)
135 drive(100, 50)
#@10

Goals:

Assign new global variables:

target_speed as 0

power as [0, 0]

Define a new function control_speed(side).

Calculate the error between Input and Output and assign the value to err.

Tools Found: Motors, Wheel Encoders, Constants, Locals and Globals, Functions, Variables

Solution:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm

If the result of adding err to power[side] is outside
the acceptable range, set it as the closest in-range value.

Run the motor at the newly calculated speed!

Instantiate variables target_speed and power.

target_speed is your feedback loop's input, it'll be in counts per second.
power is the value you'll supply to the motors.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 161 of 213

 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
 10 def counts_to_mm(count):
 11 return count * WHEEL_CIRC / COUNTS_PER_REV
 12
 13 def mm_to_counts(mm):
 14 return mm * COUNTS_PER_REV / WHEEL_CIRC
 15
 16 def sense_slot(side):
 17 val = enc.read(side)
 18 return val > THRESH
 19
 20 def check_enc(side):
 21 slot = sense_slot(side)
 22 if enc_state[side] != slot:
 23 # Disc has moved!
 24 enc_state[side] = slot
 25 enc_count[side] = enc_count[side] + 1
 26 return True
 27
 28 # No movement
 29 return False
 30
 31 def drive(cm, speed):
 32 global target_speed
 33
 34 # Convert centimeters to counts.
 35 count = mm_to_counts(cm * 10)
 36 target_speed = mm_to_counts(speed * 10)
 37
 38 # Save the starting line.
 39 start_count = enc_count.copy()
 40
 41 # [Removed motors.run() "start moving" code]
 42
 43 # Keep going until 'count' reached
 44 while True:
 45 left_moved = check_enc(LEFT)
 46 right_moved = check_enc(RIGHT)
 47
 48 # Update speed every 100ms
 49 update_speed(100)
 50
 51 if left_moved or right_moved:
 52 # print(enc_count)
 53
 54 # Calculate distance from starting line
 55 count_left = enc_count[LEFT] - start_count[LEFT]
 56 count_right = enc_count[RIGHT] - start_count[RIGHT]
 57
 58 # Are we there yet??
 59 if count_left >= count or count_right >= count:
 60 break
 61
 62 # Stop moving
 63 motors.run(LEFT, 0)
 64 motors.run(RIGHT, 0)
 65
 66 # Print total distance traveled
 67 left_dist = counts_to_mm(count_left)
 68 right_dist = counts_to_mm(count_right)
 69 print("Left Distance: ", left_dist, "mm")
 70 print("Right Distance: ", right_dist, "mm")
 71
 72 def update_speed(interval_ms):
 73 # Update speed at given interval.
 74 global last_ms, last_count
 75
 76 # Check if interval has elapsed.
 77 t_ms = ticks_diff(ticks_ms(), last_ms)
 78 if t_ms >= interval_ms:
 79 # Calculate distance traveled.
 80 d_left = enc_count[LEFT] - last_count[LEFT]
 81 d_right = enc_count[RIGHT] - last_count[RIGHT]
 82 # Save state for next time.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 162 of 213

 83 last_ms = ticks_ms()
 84 last_count = enc_count.copy()
 85 # Calculate speed
 86 t_sec = t_ms / 1000 # convert to seconds
 87 cur_speed[LEFT] = d_left / t_sec
 88 cur_speed[RIGHT] = d_right / t_sec
 89 control_speed(LEFT)
 90 control_speed(RIGHT)
 91 print_speed_cps()
 92
 93 def print_speed_cps():
 94 # Print current speed in cm per second.
 95 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
 96 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
 97 print("Left: ", cps_left, "cm/s")
 98 print("Right: ", cps_right, "cm/s")
 99
100
101 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
102
103 def control_speed(side):
104 # Set motor power to reach target speed.
105 err = (target_speed - cur_speed[side]) * FEEDBACK_PWR
106 pwr = power[side] + err
107
108 if pwr > 100:
109 pwr = 100
110 elif pwr < -100:
111 pwr = -100
112
113 power[side] = pwr
114 motors.run(side, pwr)
115
116
117
118 # --- Main program ---
119 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
120 enc_count = [0, 0]
121 last_ms = 0
122 last_count = [0, 0]
123 cur_speed = [0, 0] # Current speed in "counts per second"
124 target_speed = 0 # Desired speed in "counts per second"
125 power = [0, 0]
126
127 while True:
128 # Wait for BTN-0. Good robot.
129 buttons.was_pressed(0) # debounce
130 while True:
131 if buttons.was_pressed(0):
132 break
133
134 motors.enable(True)
135
136 # Drive (dist=cm, speed=cm/s)
137 drive(100, 50)

Objective 11 - Slow Starts, Breaks, and Brakes!

Check the 'Trek!

Run It!

When you run this code, you'll probably notice that it did not fix the problem!

After the first run, the motors still remember the last power they were at!?

How can that be? You're setting power = [0, 0] right at the top of drive()!

Debugging

Python with Robots Mission Content

©2024 Firia Labs Appendix A 163 of 213

Debug

CodeTrek:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
 10
 11 def counts_to_mm(count):
 12 return count * WHEEL_CIRC / COUNTS_PER_REV
 13
 14 def mm_to_counts(mm):
 15 return mm * COUNTS_PER_REV / WHEEL_CIRC
 16
 17 def sense_slot(side):
 18 val = enc.read(side)
 19 return val > THRESH
 20
 21 def check_enc(side):
 22 slot = sense_slot(side)
 23 if enc_state[side] != slot:
 24 # Disc has moved!
 25 enc_state[side] = slot
 26 enc_count[side] = enc_count[side] + 1
 27 return True
 28
 29 # No movement
 30 return False
 31
 32 def drive(cm, speed):
 33 global target_speed
 34
 35 # TODO: Reset motors power to zero

 36
 37 # Convert centimeters to counts.
 38 count = mm_to_counts(cm * 10)
 39 target_speed = mm_to_counts(speed * 10)
 40
 41 # Save the starting line.
 42 start_count = enc_count.copy()
 43
 44 # [Removed motors.run() "start moving" code]
 45
 46 # Keep going until 'count' reached
 47 while True:
 48 left_moved = check_enc(LEFT)
 49 right_moved = check_enc(RIGHT)
 50
 51 # Update speed every 100ms
 52 update_speed(100)
 53
 54 if left_moved or right_moved:
 55 # print(enc_count)
 56
 57 # Calculate distance from starting line
 58 count_left = enc_count[LEFT] - start_count[LEFT]
 59 count_right = enc_count[RIGHT] - start_count[RIGHT]
 60
 61 # Are we there yet??
 62 if count_left >= count or count_right >= count:
 63 break

Just like in the instructions!

Reset the power variable to it's default.
power = [0, 0]

Python with Robots Mission Content

©2024 Firia Labs Appendix A 164 of 213

 64
 65 # Stop moving
 66 motors.run(LEFT, 0)
 67 motors.run(RIGHT, 0)
 68
 69 # Print total distance traveled
 70 left_dist = counts_to_mm(count_left)
 71 right_dist = counts_to_mm(count_right)
 72 print("Left Distance: ", left_dist, "mm")
 73 print("Right Distance: ", right_dist, "mm")
 74
 75 def update_speed(interval_ms):
 76 # Update speed at given interval.
 77 global last_ms, last_count
 78
 79 # Check if interval has elapsed.
 80 t_ms = ticks_diff(ticks_ms(), last_ms)
 81 if t_ms >= interval_ms:
 82 # Calculate distance traveled.
 83 d_left = enc_count[LEFT] - last_count[LEFT]
 84 d_right = enc_count[RIGHT] - last_count[RIGHT]
 85 # Save state for next time.
 86 last_ms = ticks_ms()
 87 last_count = enc_count.copy()
 88 # Calculate speed
 89 t_sec = t_ms / 1000 # convert to seconds
 90 cur_speed[LEFT] = d_left / t_sec
 91 cur_speed[RIGHT] = d_right / t_sec
 92 control_speed(LEFT)
 93 control_speed(RIGHT)
 94 print_speed_cps()
 95
 96 def print_speed_cps():
 97 # Print current speed in cm per second.
 98 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
 99 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
100 print("Left: ", cps_left, "cm/s")
101 print("Right: ", cps_right, "cm/s")
102
103 def control_speed(side):
104 # Set motor power to reach target speed.
105 err = (target_speed - cur_speed[side]) * FEEDBACK_PWR
106 pwr = power[side] + err
107
108 if pwr > 100:
109 pwr = 100
110 elif pwr < -100:
111 pwr = -100
112
113 power[side] = pwr
114 motors.run(side, pwr)
115
116
117
118 # --- Main program ---
119 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
120 enc_count = [0, 0]
121 last_ms = 0
122 last_count = [0, 0]
123 cur_speed = [0, 0] # Current speed in "counts per second"
124 target_speed = 0 # Desired speed in "counts per second"
125 power = [0, 0]
126
127 while True:
128 # Wait for BTN-0. Good robot.
129 buttons.was_pressed(0) # debounce
130 while True:
131 if buttons.was_pressed(0):
132 break
133
134 motors.enable(True)
135
136 # Drive (dist=cm, speed=cm/s)
137 drive(100, 50)

Goals:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 165 of 213

At the beginning of the drive function, reset the power variable to it's defualt ([0, 0]).

Step Into the program using the debugger.

Tools Found: Functions, Motors, Variables, Advanced Debugging

Solution:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
 10 def counts_to_mm(count):
 11 return count * WHEEL_CIRC / COUNTS_PER_REV
 12
 13 def mm_to_counts(mm):
 14 return mm * COUNTS_PER_REV / WHEEL_CIRC
 15
 16 def sense_slot(side):
 17 val = enc.read(side)
 18 return val > THRESH
 19
 20 def check_enc(side):
 21 slot = sense_slot(side)
 22 if enc_state[side] != slot:
 23 # Disc has moved!
 24 enc_state[side] = slot
 25 enc_count[side] = enc_count[side] + 1
 26 return True
 27
 28 # No movement
 29 return False
 30
 31 def drive(cm, speed):
 32 global target_speed
 33
 34 power = [0, 0]
 35
 36 # Convert centimeters to counts.
 37 count = mm_to_counts(cm * 10)
 38 target_speed = mm_to_counts(speed * 10)
 39
 40 # Save the starting line.
 41 start_count = enc_count.copy()
 42
 43 # [Removed motors.run() "start moving" code]
 44
 45 # Keep going until 'count' reached
 46 while True:
 47 left_moved = check_enc(LEFT)
 48 right_moved = check_enc(RIGHT)
 49
 50 # Update speed every 100ms
 51 update_speed(100)
 52
 53 if left_moved or right_moved:
 54 # print(enc_count)
 55
 56 # Calculate distance from starting line
 57 count_left = enc_count[LEFT] - start_count[LEFT]
 58 count_right = enc_count[RIGHT] - start_count[RIGHT]
 59
 60 # Are we there yet??
 61 if count_left >= count or count_right >= count:
 62 break
 63
 64 # Stop moving
 65 motors.run(LEFT, 0)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 166 of 213

 66 motors.run(RIGHT, 0)
 67
 68 # Print total distance traveled
 69 left_dist = counts_to_mm(count_left)
 70 right_dist = counts_to_mm(count_right)
 71 print("Left Distance: ", left_dist, "mm")
 72 print("Right Distance: ", right_dist, "mm")
 73
 74 def update_speed(interval_ms):
 75 # Update speed at given interval.
 76 global last_ms, last_count
 77
 78 # Check if interval has elapsed.
 79 t_ms = ticks_diff(ticks_ms(), last_ms)
 80 if t_ms >= interval_ms:
 81 # Calculate distance traveled.
 82 d_left = enc_count[LEFT] - last_count[LEFT]
 83 d_right = enc_count[RIGHT] - last_count[RIGHT]
 84 # Save state for next time.
 85 last_ms = ticks_ms()
 86 last_count = enc_count.copy()
 87 # Calculate speed
 88 t_sec = t_ms / 1000 # convert to seconds
 89 cur_speed[LEFT] = d_left / t_sec
 90 cur_speed[RIGHT] = d_right / t_sec
 91 control_speed(LEFT)
 92 control_speed(RIGHT)
 93 print_speed_cps()
 94
 95 def print_speed_cps():
 96 # Print current speed in cm per second.
 97 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
 98 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
 99 print("Left: ", cps_left, "cm/s")
100 print("Right: ", cps_right, "cm/s")
101
102
103 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
104
105 def control_speed(side):
106 # Set motor power to reach target speed.
107 err = (target_speed - cur_speed[side]) * FEEDBACK_PWR
108 pwr = power[side] + err
109
110 if pwr > 100:
111 pwr = 100
112 elif pwr < -100:
113 pwr = -100
114
115 power[side] = pwr
116 motors.run(side, pwr)
117
118
119
120 # --- Main program ---
121 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
122 enc_count = [0, 0]
123 last_ms = 0
124 last_count = [0, 0]
125 cur_speed = [0, 0] # Current speed in "counts per second"
126 target_speed = 0 # Desired speed in "counts per second"
127 power = [0, 0]
128
129 while True:
130 # Wait for BTN-0. Good robot.
131 buttons.was_pressed(0) # debounce
132 while True:
133 if buttons.was_pressed(0):
134 break
135
136 motors.enable(True)
137
138 # Drive (dist=cm, speed=cm/s)
139 drive(100, 50)

Objective 12 - Breakpoints

Python with Robots Mission Content

©2024 Firia Labs Appendix A 167 of 213

Introducing Breakpoints

A breakpoint is a marker you can place on any executable line of code.

bug_report Debug the code, press CONTINUE, and it will STOP when it hits a
breakpoint!

Then you can inspect your variables and either:

check_box_outline_blank STOP the program,
 STEP into the next lines of code, or
 CONTINUE running the code until it ends or hits the next breakpoint, or

STEP OVER and STEP OUT which you'll learn about in a different mission!

Notes:

You can only set breakpoints when your CodeBot is connected and stopped.
Click in margin to the left of the line number where you want the breakpoint.
To remove a breakpoint, just click on its red dot symbol.
CodeBot supports up to 16 breakpoints at a time.

Debug: with Breakpoints!

Make sure your CodeBot is connected and stopped.

Click to the left of the line number of the statement power = [0, 0] in your drive() function.
Be sure you see the red dot marker (see picture above).

Now, click the the bug_report "Debug" button!

When the yellow line appears, press the "Continue" button.
On CodeBot, press BTN-0 to start the first run.
Your program should stop at the breakpoint!

This is the first run, so press to continue.
After the first run, press BTN-0 again.
This time when your program stops at the breakpoint, start inspecting variables.

Stop, Step, and Inspect

When your code hits the breakpoint, open the console to view your Variables.

The pictures below show the variables at the breakpoint and after one single step.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 168 of 213

1. Stopped at breakpoint 2. Stepped to next line

Ah! By mistake a local version of power was created!

So that explains why the global power was not reset.

It was assigned inside a function which did not declare it as global.
When you assign to a variable inside a function, Python assumes it is local unless you tell it otherwise.

Type in the Code

There's an easy fix for this problem: Add power to the global list at the top of drive().

Make the change and give it a try!

def drive(cm, speed):
 global target_speed, power
 ...

Run It!

Test that small fix, and make sure it works as planned.

Oh, and one more improvement!

Have you noticed that your 'bot sometimes overshoots the mark a bit when you're running at high speed on a measured path.

You have been testing it on a measured path, haven't you??

If you want CodeBot to "Stick the Landing" then you'll need to put on the brakes!

Just reverse the motors for a short time, say 50ms.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 169 of 213

Check the 'Trek!

Find the code near the end of your drive() function that shuts down the motors.

Before setting them to 0%, add code to do a quick reverse of the motors.
Use the current power[] settings, so the braking is proportional to your speed.

To reverse the current values, just negate them! (flip the ± sign with −)
About 50 ms of braking should be enough to fully stop the wheels.
Use the sleep_ms() function from the time module to get a more precise delay than normal sleep().

CodeTrek:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff, sleep_ms

 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
 10
 11 def counts_to_mm(count):
 12 return count * WHEEL_CIRC / COUNTS_PER_REV
 13
 14 def mm_to_counts(mm):
 15 return mm * COUNTS_PER_REV / WHEEL_CIRC
 16
 17 def sense_slot(side):
 18 val = enc.read(side)
 19 return val > THRESH
 20
 21 def check_enc(side):
 22 slot = sense_slot(side)
 23 if enc_state[side] != slot:
 24 # Disc has moved!
 25 enc_state[side] = slot
 26 enc_count[side] = enc_count[side] + 1
 27 return True
 28
 29 # No movement
 30 return False
 31
 32 def drive(cm, speed):
 33 global target_speed, # TODO: Add power as a global

 34
 35 power = [0, 0]
 36
 37 # Convert centimeters to counts.
 38 count = mm_to_counts(cm * 10)
 39 target_speed = mm_to_counts(speed * 10)
 40
 41 # Save the starting line.
 42 start_count = enc_count.copy()
 43
 44 # [Removed motors.run() "start moving" code]
 45
 46 # Keep going until 'count' reached
 47 while True:
 48 left_moved = check_enc(LEFT)

Import sleep_ms from time!

sleep_ms is the same as sleep, except it takes milliseconds as an argument instead of seconds!

Add the variable power as a global!

global target_speed, power

Python with Robots Mission Content

©2024 Firia Labs Appendix A 170 of 213

 49 right_moved = check_enc(RIGHT)
 50
 51 # Update speed every 100ms
 52 update_speed(100)
 53
 54 if left_moved or right_moved:
 55 # print(enc_count)
 56
 57 # Calculate distance from starting line
 58 count_left = enc_count[LEFT] - start_count[LEFT]
 59 count_right = enc_count[RIGHT] - start_count[RIGHT]
 60
 61 # Are we there yet??
 62 if count_left >= count or count_right >= count:
 63 break
 64
 65 # Brake
 66 # TODO: reverse the motors to break

 67 sleep_ms(50)

 68
 69 # Stop moving
 70 motors.run(LEFT, 0)
 71 motors.run(RIGHT, 0)
 72
 73 # Print total distance traveled
 74 left_dist = counts_to_mm(count_left)
 75 right_dist = counts_to_mm(count_right)
 76 print("Left Distance: ", left_dist, "mm")
 77 print("Right Distance: ", right_dist, "mm")
 78
 79 def update_speed(interval_ms):
 80 # Update speed at given interval.
 81 global last_ms, last_count
 82
 83 # Check if interval has elapsed.
 84 t_ms = ticks_diff(ticks_ms(), last_ms)
 85 if t_ms >= interval_ms:
 86 # Calculate distance traveled.
 87 d_left = enc_count[LEFT] - last_count[LEFT]
 88 d_right = enc_count[RIGHT] - last_count[RIGHT]
 89 # Save state for next time.
 90 last_ms = ticks_ms()
 91 last_count = enc_count.copy()
 92 # Calculate speed
 93 t_sec = t_ms / 1000 # convert to seconds
 94 cur_speed[LEFT] = d_left / t_sec
 95 cur_speed[RIGHT] = d_right / t_sec
 96 control_speed(LEFT)
 97 control_speed(RIGHT)
 98 print_speed_cps()
 99
100 def print_speed_cps():
101 # Print current speed in cm per second.
102 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
103 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
104 print("Left: ", cps_left, "cm/s")
105 print("Right: ", cps_right, "cm/s")
106
107 def control_speed(side):
108 # Set motor power to reach target speed.
109 err = (target_speed - cur_speed[side]) * FEEDBACK_PWR
110 pwr = power[side] + err

Run both motors in the reverse briefly!

Each motor's current power is stored in the power global.

motors.run(LEFT, -power[LEFT])
motors.run(RIGHT, -power[RIGHT])

Sleep for 50 milliseconds!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 171 of 213

111
112 if pwr > 100:
113 pwr = 100
114 elif pwr < -100:
115 pwr = -100
116
117 power[side] = pwr
118 motors.run(side, pwr)
119
120
121
122 # --- Main program ---
123 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
124 enc_count = [0, 0]
125 last_ms = 0
126 last_count = [0, 0]
127 cur_speed = [0, 0] # Current speed in "counts per second"
128 target_speed = 0 # Desired speed in "counts per second"
129 power = [0, 0]
130
131 while True:
132 # Wait for BTN-0. Good robot.
133 buttons.was_pressed(0) # debounce
134 while True:
135 if buttons.was_pressed(0):
136 break
137
138 motors.enable(True)
139
140 # Drive (dist=cm, speed=cm/s)
141 drive(100, 50)

Goals:

bug_report Debug the code and use the continue button.

Add power to the global list at the top of drive() on the same line as target_speed.

Import sleep_ms from time.

Reverse both motors by calling motors.run with the inverse of each side in power.

Tools Found: Variables, Print Function, Locals and Globals, Functions, Motors, Time Module, import

Solution:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff, sleep_ms
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 8 THRESH = 1000
 9
 10 def counts_to_mm(count):
 11 return count * WHEEL_CIRC / COUNTS_PER_REV
 12
 13 def mm_to_counts(mm):
 14 return mm * COUNTS_PER_REV / WHEEL_CIRC
 15
 16 def sense_slot(side):
 17 val = enc.read(side)
 18 return val > THRESH
 19
 20 def check_enc(side):
 21 slot = sense_slot(side)
 22 if enc_state[side] != slot:
 23 # Disc has moved!
 24 enc_state[side] = slot
 25 enc_count[side] = enc_count[side] + 1
 26 return True

Python with Robots Mission Content

©2024 Firia Labs Appendix A 172 of 213

 27
 28 # No movement
 29 return False
 30
 31 def drive(cm, speed):
 32 global target_speed, power
 33
 34 power = [0, 0]
 35
 36 # Convert centimeters to counts.
 37 count = mm_to_counts(cm * 10)
 38 target_speed = mm_to_counts(speed * 10)
 39
 40 # Save the starting line.
 41 start_count = enc_count.copy()
 42
 43 # [Removed motors.run() "start moving" code]
 44
 45 # Keep going until 'count' reached
 46 while True:
 47 left_moved = check_enc(LEFT)
 48 right_moved = check_enc(RIGHT)
 49
 50 # Update speed every 100ms
 51 update_speed(100)
 52
 53 if left_moved or right_moved:
 54 # print(enc_count)
 55
 56 # Calculate distance from starting line
 57 count_left = enc_count[LEFT] - start_count[LEFT]
 58 count_right = enc_count[RIGHT] - start_count[RIGHT]
 59
 60 # Are we there yet??
 61 if count_left >= count or count_right >= count:
 62 break
 63
 64 # Brake
 65 motors.run(LEFT, -power[LEFT])
 66 motors.run(RIGHT, -power[RIGHT])
 67 sleep_ms(50)
 68
 69 # Stop moving
 70 motors.run(LEFT, 0)
 71 motors.run(RIGHT, 0)
 72
 73 # Print total distance traveled
 74 left_dist = counts_to_mm(count_left)
 75 right_dist = counts_to_mm(count_right)
 76 print("Left Distance: ", left_dist, "mm")
 77 print("Right Distance: ", right_dist, "mm")
 78
 79 def update_speed(interval_ms):
 80 # Update speed at given interval.
 81 global last_ms, last_count
 82
 83 # Check if interval has elapsed.
 84 t_ms = ticks_diff(ticks_ms(), last_ms)
 85 if t_ms >= interval_ms:
 86 # Calculate distance traveled.
 87 d_left = enc_count[LEFT] - last_count[LEFT]
 88 d_right = enc_count[RIGHT] - last_count[RIGHT]
 89 # Save state for next time.
 90 last_ms = ticks_ms()
 91 last_count = enc_count.copy()
 92 # Calculate speed
 93 t_sec = t_ms / 1000 # convert to seconds
 94 cur_speed[LEFT] = d_left / t_sec
 95 cur_speed[RIGHT] = d_right / t_sec
 96 control_speed(LEFT)
 97 control_speed(RIGHT)
 98 print_speed_cps()
 99
100 def print_speed_cps():
101 # Print current speed in cm per second.
102 cps_left = counts_to_mm(cur_speed[LEFT]) / 10

Python with Robots Mission Content

©2024 Firia Labs Appendix A 173 of 213

103 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
104 print("Left: ", cps_left, "cm/s")
105 print("Right: ", cps_right, "cm/s")
106
107
108 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
109
110 def control_speed(side):
111 # Set motor power to reach target speed.
112 err = (target_speed - cur_speed[side]) * FEEDBACK_PWR
113 pwr = power[side] + err
114
115 if pwr > 100:
116 pwr = 100
117 elif pwr < -100:
118 pwr = -100
119
120 power[side] = pwr
121 motors.run(side, pwr)
122
123
124
125 # --- Main program ---
126 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
127 enc_count = [0, 0]
128 last_ms = 0
129 last_count = [0, 0]
130 cur_speed = [0, 0] # Current speed in "counts per second"
131 target_speed = 0 # Desired speed in "counts per second"
132 power = [0, 0]
133
134 while True:
135 # Wait for BTN-0. Good robot.
136 buttons.was_pressed(0) # debounce
137 while True:
138 if buttons.was_pressed(0):
139 break
140
141 motors.enable(True)
142
143 # Drive (dist=cm, speed=cm/s)
144 drive(100, 50)

Objective 13 - Dead Reckoning!

You need just one more Navigation capability to chart a course with a distance and direction of
your choosing!

Direction of Rotation: Clockwise or Counter-clockwise?

Making the wheels move a certain distance in a straight line is one thing.

You might think angular rotation will be a lot tricker!
Actually it's really easy!
Your drive() function is already doing most of the work.

How do you specify the direction of rotation?

The table below shows signs you would use for LEFT and RIGHT motor power for movement and rotation.

Direction LEFTRIGHT
Forward + +
Backward - -
Rotate CW + -
Rotate CCW - +

Example:

Rotate Clockwise
motors.run(LEFT, +50)
motors.run(RIGHT, -50)

Your drive() function only handles forward movement so far.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 174 of 213

Your next step is to fix that!

Check the 'Trek!

Add the following to your code, for selectable drive directions.

Use a global variable direction[] to hold the LEFT and RIGHT signs for motor power.
In your control_speed() function, modify the power you set with motors.run().

You'll need to multiply the pwr value by +1 or -1 to set the direction.
So direction = [-1, -1] will mean backward.

Set the global direction inside your drive() function.
When you call the drive() function, you can pass-in a new direction.

The code below shows how you can define default parameter values in Python.
That means if you don't supply a new value for dir then the default value is used.
In this case, default to forward [+1, +1]

Run It!

Try driving forward and backward.

Pretty simple change, right?
Also try some rotation!

CodeTrek:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff, sleep_ms
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 TRACK_WIDTH = 114 # mm
 8 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 9 THRESH = 1000
 10 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
 11
 12 def counts_to_mm(count):
 13 return count * WHEEL_CIRC / COUNTS_PER_REV
 14
 15 def mm_to_counts(mm):
 16 return mm * COUNTS_PER_REV / WHEEL_CIRC
 17
 18 def sense_slot(side):
 19 val = enc.read(side)
 20 return val > THRESH
 21
 22 def check_enc(side):
 23 slot = sense_slot(side)
 24 if enc_state[side] != slot:
 25 # Disc has moved!
 26 enc_state[side] = slot
 27 enc_count[side] = enc_count[side] + 1
 28 return True
 29
 30 # No movement
 31 return False
 32
 33
 34 def drive(cm, speed, dir=[+1, +1]):

 35 global target_speed, power, direction

Update your drive function to accept dir as an argument.

Setting the value of a parameter sets it's default.
If you were to call drive(30, 10), dir would be [+1, +1].
If you were to call drive(30, 10, [-1, -1]) , dir would be [-1, -1]!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 175 of 213

 36 # Set the global direction.
 37 direction = dir

 38
 39
 40 # Reset the motor to zero power.
 41 power = [0, 0]
 42
 43 # Convert centimeters to counts.
 44 count = mm_to_counts(cm * 10)
 45 target_speed = mm_to_counts(speed * 10)
 46
 47 # Save the starting line.
 48 start_count = enc_count.copy()
 49
 50 # Keep going until 'count' reached
 51 while True:
 52 left_moved = check_enc(LEFT)
 53 right_moved = check_enc(RIGHT)
 54
 55 # Update speed every 100ms
 56 update_speed(100)
 57
 58 if left_moved or right_moved:
 59 # print(enc_count)
 60
 61 # Calculate distance from starting line
 62 count_left = enc_count[LEFT] - start_count[LEFT]
 63 count_right = enc_count[RIGHT] - start_count[RIGHT]
 64
 65 # Are we there yet??
 66 if count_left >= count or count_right >= count:
 67 break
 68
 69 # Brake
 70 motors.run(LEFT, -power[LEFT])
 71 motors.run(RIGHT, -power[RIGHT])
 72 sleep_ms(50)
 73
 74 # Stop moving
 75 motors.run(LEFT, 0)
 76 motors.run(RIGHT, 0)
 77
 78 # Print total distance traveled
 79 left_dist = counts_to_mm(count_left)
 80 right_dist = counts_to_mm(count_right)
 81 print("Left Distance: ", left_dist, "mm")
 82 print("Right Distance: ", right_dist, "mm")
 83
 84 def update_speed(interval_ms):
 85 # Update speed at given interval.
 86 global last_ms, last_count
 87
 88 # Check if interval has elapsed.
 89 t_ms = ticks_diff(ticks_ms(), last_ms)
 90 if t_ms >= interval_ms:
 91 # Calculate distance traveled.
 92 d_left = enc_count[LEFT] - last_count[LEFT]
 93 d_right = enc_count[RIGHT] - last_count[RIGHT]
 94 # Save state for next time.
 95 last_ms = ticks_ms()
 96 last_count = enc_count.copy()
 97 # Calculate speed
 98 t_sec = t_ms / 1000 # convert to seconds
 99 cur_speed[LEFT] = d_left / t_sec
100 cur_speed[RIGHT] = d_right / t_sec
101 control_speed(LEFT)

Add direction to your globals list.

Set the global as the value dir supplied to drive.

You'll be referencing it in the next step!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 176 of 213

102 control_speed(RIGHT)
103 print("Power: ", power)
104 print_speed_cps()
105
106 def print_speed_cps():
107 # Print current speed in cm per second.
108 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
109 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
110 print("Left: ", cps_left, "cm/s")
111 print("Right: ", cps_right, "cm/s")
112
113 def control_speed(side):
114 # Set motor power to reach target speed.
115 err = target_speed - cur_speed[side]
116 pwr = power[side] + err * FEEDBACK_PWR
117
118 if pwr > 100:
119 pwr = 100
120 elif pwr < -100:
121 pwr = -100
122
123 power[side] = pwr
124 # TODO: Apply the direction to the line motors.run(side, pwr)

125
126 # --- Main program ---
127 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
128 enc_count = [0, 0]
129 last_ms = 0
130 last_count = [0, 0]
131 cur_speed = [0, 0] # Current speed in "counts per second"
132 target_speed = 0
133 power = [0, 0]
134
135 while True:
136 # Wait for BTN-0. Good robot.
137 buttons.was_pressed(0) # debounce
138 while True:
139 if buttons.was_pressed(0):
140 break
141
142 motors.enable(True)
143
144 # Go forward - using default parameter [+1, +1]
145 drive(30, 10)

146 # Back up!
147 drive(30, 10, [-1, -1])

Goals:

Define a default parameter value in your drive() function for the new parameter dir.

Update the motors.run call in your control_speed() function.

Multiply pwr by direction[side].

Update the motors.run call in your control_speed() function.

Multiply pwr by direction[side] to apply the direction.
motors.run(side, pwr * direction[side])

Calling drive() without supplying a value to the parameter dir
will use the parameter's default!

In this case, it'll default to [+1, +1].

Supplying a value to the parameter dir will cause the default to be overridden!

In this case, dir will be [-1, -1]

Python with Robots Mission Content

©2024 Firia Labs Appendix A 177 of 213

Tools Found: Motors, Locals and Globals, Functions, Keyword and Positional Arguments, Parameters, Arguments, and Returns

Solution:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff, sleep_ms
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 TRACK_WIDTH = 114 # mm
 8 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 9 THRESH = 1000
 10
 11 def counts_to_mm(count):
 12 return count * WHEEL_CIRC / COUNTS_PER_REV
 13
 14 def mm_to_counts(mm):
 15 return mm * COUNTS_PER_REV / WHEEL_CIRC
 16
 17 def sense_slot(side):
 18 val = enc.read(side)
 19 return val > THRESH
 20
 21 def check_enc(side):
 22 slot = sense_slot(side)
 23 if enc_state[side] != slot:
 24 # Disc has moved!
 25 enc_state[side] = slot
 26 enc_count[side] = enc_count[side] + 1
 27 return True
 28
 29 # No movement
 30 return False
 31
 32
 33 def drive(cm, speed, dir=[+1, +1]):
 34 global target_speed, power, direction
 35 # Set the global direction.
 36 direction = dir
 37
 38
 39 # Reset the motor to zero power.
 40 power = [0, 0]
 41
 42 # Convert centimeters to counts.
 43 count = mm_to_counts(cm * 10)
 44 target_speed = mm_to_counts(speed * 10)
 45
 46 # Save the starting line.
 47 start_count = enc_count.copy()
 48
 49 # Keep going until 'count' reached
 50 while True:
 51 left_moved = check_enc(LEFT)
 52 right_moved = check_enc(RIGHT)
 53
 54 # Update speed every 100ms
 55 update_speed(100)
 56
 57 if left_moved or right_moved:
 58 # print(enc_count)
 59
 60 # Calculate distance from starting line
 61 count_left = enc_count[LEFT] - start_count[LEFT]
 62 count_right = enc_count[RIGHT] - start_count[RIGHT]
 63
 64 # Are we there yet??
 65 if count_left >= count or count_right >= count:
 66 break
 67
 68 # Brake
 69 motors.run(LEFT, -power[LEFT])

Python with Robots Mission Content

©2024 Firia Labs Appendix A 178 of 213

 70 motors.run(RIGHT, -power[RIGHT])
 71 sleep_ms(50)
 72
 73 # Stop moving
 74 motors.run(LEFT, 0)
 75 motors.run(RIGHT, 0)
 76
 77 # Print total distance traveled
 78 left_dist = counts_to_mm(count_left)
 79 right_dist = counts_to_mm(count_right)
 80 print("Left Distance: ", left_dist, "mm")
 81 print("Right Distance: ", right_dist, "mm")
 82
 83 def update_speed(interval_ms):
 84 # Update speed at given interval.
 85 global last_ms, last_count
 86
 87 # Check if interval has elapsed.
 88 t_ms = ticks_diff(ticks_ms(), last_ms)
 89 if t_ms >= interval_ms:
 90 # Calculate distance traveled.
 91 d_left = enc_count[LEFT] - last_count[LEFT]
 92 d_right = enc_count[RIGHT] - last_count[RIGHT]
 93 # Save state for next time.
 94 last_ms = ticks_ms()
 95 last_count = enc_count.copy()
 96 # Calculate speed
 97 t_sec = t_ms / 1000 # convert to seconds
 98 cur_speed[LEFT] = d_left / t_sec
 99 cur_speed[RIGHT] = d_right / t_sec
100 control_speed(LEFT)
101 control_speed(RIGHT)
102 print("Power: ", power)
103 print_speed_cps()
104
105 def print_speed_cps():
106 # Print current speed in cm per second.
107 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
108 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
109 print("Left: ", cps_left, "cm/s")
110 print("Right: ", cps_right, "cm/s")
111
112 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
113
114 def control_speed(side):
115 # Set motor power to reach target speed.
116 err = target_speed - cur_speed[side]
117 pwr = power[side] + err * FEEDBACK_PWR
118
119 if pwr > 100:
120 pwr = 100
121 elif pwr < -100:
122 pwr = -100
123
124 power[side] = pwr
125 motors.run(side, pwr * direction[side])
126
127
128 # --- Main program ---
129 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
130 enc_count = [0, 0]
131 last_ms = 0
132 last_count = [0, 0]
133 cur_speed = [0, 0] # Current speed in "counts per second"
134 target_speed = 0
135 power = [0, 0]
136
137 while True:
138 # Wait for BTN-0. Good robot.
139 buttons.was_pressed(0) # debounce
140 while True:
141 if buttons.was_pressed(0):
142 break
143
144 motors.enable(True)
145

Python with Robots Mission Content

©2024 Firia Labs Appendix A 179 of 213

146 # Go forward - using default parameter [+1, +1]
147 drive(30, 10)
148 # Back up!
149 drive(30, 10, [-1, -1])

Objective 14 - Dead Reckoning 2

Rotation by a Specified Angle

When your 'bot rotates in place, the wheels trace a circular path.

The diameter of the circle shown at right is called the Wheel Track width.
So if the 'bot rotates through a full 360° circle,

...the wheels travel its full circumference!

Ex: To rotate 180° each wheel would need to travel:

For other angles substitute desired angle for 180° in the above formula!

Now to add a function that makes rotation easy!

Change Your Heading

In navigation, your heading is the direction you are facing.

If you turn 90° to the right (clockwise), you've changed your heading by +90°.
If you turn to the left (counter-clockwise) that's a negative angle heading change.

Check the 'Trek!

Define a new function def rotate(angle, speed):.

See above for the formula to calculate distance based on angle.
Measure your track width and define a constant for it in mm. On my 'bot I measured TRACK_WIDTH = 114.

A positive angle should rotate clockwise, and negative should rotate counter-clockwise like a navigational heading.

Run It!

Take your new rotation code for a spin!

Test out different speeds and angles.
The accuracy won't be perfect, but it sure beats guessing!

A New Level of Control

Your drive() and rotate() functions give you a much better way to provide exact movement instructions to CodeBot.

Remember your First Navigation Challenge to "drive in a square?"
Try it now with your new code!

CodeTrek:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff, sleep_ms
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 TRACK_WIDTH = 114 # mm

circumference = π ⋅ track width

distance = circumference ⋅ ​(
360
180

)

Don't forget to set TRACK_WIDTH as a constant!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 180 of 213

 8 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 9 THRESH = 1000
 10 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
 11
 12 def counts_to_mm(count):
 13 return count * WHEEL_CIRC / COUNTS_PER_REV
 14
 15 def mm_to_counts(mm):
 16 return mm * COUNTS_PER_REV / WHEEL_CIRC
 17
 18 def sense_slot(side):
 19 val = enc.read(side)
 20 return val > THRESH
 21
 22 def check_enc(side):
 23 slot = sense_slot(side)
 24 if enc_state[side] != slot:
 25 # Disc has moved!
 26 enc_state[side] = slot
 27 enc_count[side] = enc_count[side] + 1
 28 return True
 29
 30 # No movement
 31 return False
 32
 33 def drive(cm, speed, dir=[1, 1]):
 34 global target_speed, power, direction
 35 print("target dist=", cm, "cm")
 36 direction = dir
 37
 38 # Reset the motor to zero power
 39 power = [0, 0]
 40
 41 # Convert centimeters to counts.
 42 count = mm_to_counts(cm * 10)
 43 target_speed = mm_to_counts(speed * 10)
 44
 45 # Save the starting line.
 46 start_count = enc_count.copy()
 47
 48 # Keep going until 'count' reached
 49 while True:
 50 left_moved = check_enc(LEFT)
 51 right_moved = check_enc(RIGHT)
 52
 53 # Update speed every 100ms
 54 update_speed(100)
 55
 56 if left_moved or right_moved:
 57 # print(enc_count)
 58
 59 # Calculate distance from starting line
 60 count_left = enc_count[LEFT] - start_count[LEFT]
 61 count_right = enc_count[RIGHT] - start_count[RIGHT]
 62
 63 # Are we there yet??
 64 if count_left >= count or count_right >= count:
 65 break
 66
 67 # Brake
 68 motors.run(LEFT, -power[LEFT])
 69 motors.run(RIGHT, -power[RIGHT])
 70 sleep_ms(50)
 71
 72 # Stop moving
 73 motors.run(LEFT, 0)
 74 motors.run(RIGHT, 0)
 75
 76 # Print total distance traveled
 77 left_dist = counts_to_mm(count_left)
 78 right_dist = counts_to_mm(count_right)
 79 print("Left Distance: ", left_dist, "mm")
 80 print("Right Distance: ", right_dist, "mm")
 81

Mine was 114!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 181 of 213

 82 def update_speed(interval_ms):
 83 # Update speed at given interval.
 84 global last_ms, last_count
 85
 86 # Check if interval has elapsed.
 87 t_ms = ticks_diff(ticks_ms(), last_ms)
 88 if t_ms >= interval_ms:
 89 # Calculate distance traveled.
 90 d_left = enc_count[LEFT] - last_count[LEFT]
 91 d_right = enc_count[RIGHT] - last_count[RIGHT]
 92 # Save state for next time.
 93 last_ms = ticks_ms()
 94 last_count = enc_count.copy()
 95 # Calculate speed
 96 t_sec = t_ms / 1000 # convert to seconds
 97 cur_speed[LEFT] = d_left / t_sec
 98 cur_speed[RIGHT] = d_right / t_sec
 99 control_speed(LEFT)
100 control_speed(RIGHT)
101 print("Power: ", power)
102 print_speed_cps()
103
104 def print_speed_cps():
105 # Print current speed in cm per second.
106 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
107 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
108 print("Left: ", cps_left, "cm/s")
109 print("Right: ", cps_right, "cm/s")
110
111 def control_speed(side):
112 # Set motor power to reach target speed.
113 err = target_speed - cur_speed[side]
114 pwr = power[side] + err * FEEDBACK_PWR
115
116 if pwr > 100:
117 pwr = 100
118 elif pwr < -100:
119 pwr = -100
120
121 power[side] = pwr
122 motors.run(side, pwr * direction[side])
123
124
125 def rotate(angle, speed):

126 # Determine direction of L,R wheels.
127 if angle < 0:
128 dir = [-1, +1] # CCW heading
129 else:
130 dir = [+1, -1] # CW heading

131
132 # Full 360 degree rotation in mm
133 # is pi * diameter.
134 circumference = math.pi * TRACK_WIDTH

135 dist_mm = # TODO: Calculate the distance in mm!

Define your new rotate(angle, speed) function.

angle represents your heading.

Determine motor direction based on the angle 's sign.

Calculate the full 360 degree rotation of your 'bot in millimeters.

TRACK_WIDTH is the distance between the wheels!

Calculate the distance in millimeters to drive()!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 182 of 213

136 cm = dist_mm / 10
137 drive(cm, speed, dir)

138
139
140
141 # --- Main program ---
142 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
143 enc_count = [0, 0]
144 last_ms = 0
145 last_count = [0, 0]
146 cur_speed = [0, 0] # Current speed in "counts per second"
147 target_speed = 0
148 power = [0, 0]
149
150 while True:
151 # Wait for BTN-0. Good robot.
152 buttons.was_pressed(0) # debounce
153 while True:
154 if buttons.was_pressed(0):
155 break
156
157 motors.enable(True)
158
159 # Turn to the right
160 rotate(90, 10)

Goals:

Define a new function rotate(angle, speed).

Assign the wheel track width of your 'bot to the constant variable TRACK_WIDTH.

Assign the distance to drive in mm to the variable dist_mm.

Tools Found: Functions, Constants, Motors

Solution:

 1 from botcore import *
 2 import math
 3 from time import ticks_ms, ticks_diff, sleep_ms
 4
 5 COUNTS_PER_REV = 40
 6 WHEEL_DIA = 66.5 # mm
 7 TRACK_WIDTH = 114 # mm
 8 WHEEL_CIRC = (math.pi * WHEEL_DIA)
 9 THRESH = 1000
 10
 11 def counts_to_mm(count):
 12 return count * WHEEL_CIRC / COUNTS_PER_REV
 13
 14 def mm_to_counts(mm):
 15 return mm * COUNTS_PER_REV / WHEEL_CIRC
 16
 17 def sense_slot(side):
 18 val = enc.read(side)
 19 return val > THRESH
 20
 21 def check_enc(side):

dist_mm = abs(circumference * angle / 360)

distance = circumference ⋅ ​(
360
angle

)

Put it all together and drive!

Start with 90 and 10, then test out different speeds and angles!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 183 of 213

 22 slot = sense_slot(side)
 23 if enc_state[side] != slot:
 24 # Disc has moved!
 25 enc_state[side] = slot
 26 enc_count[side] = enc_count[side] + 1
 27 return True
 28
 29 # No movement
 30 return False
 31
 32 def drive(cm, speed, dir=[1, 1]):
 33 global target_speed, power, direction
 34 print("target dist=", cm, "cm")
 35 direction = dir
 36
 37 # Reset the motor to zero power
 38 power = [0, 0]
 39
 40 # Convert centimeters to counts.
 41 count = mm_to_counts(cm * 10)
 42 target_speed = mm_to_counts(speed * 10)
 43
 44 # Save the starting line.
 45 start_count = enc_count.copy()
 46
 47 # Keep going until 'count' reached
 48 while True:
 49 left_moved = check_enc(LEFT)
 50 right_moved = check_enc(RIGHT)
 51
 52 # Update speed every 100ms
 53 update_speed(100)
 54
 55 if left_moved or right_moved:
 56 # print(enc_count)
 57
 58 # Calculate distance from starting line
 59 count_left = enc_count[LEFT] - start_count[LEFT]
 60 count_right = enc_count[RIGHT] - start_count[RIGHT]
 61
 62 # Are we there yet??
 63 if count_left >= count or count_right >= count:
 64 break
 65
 66 # Brake
 67 motors.run(LEFT, -power[LEFT])
 68 motors.run(RIGHT, -power[RIGHT])
 69 sleep_ms(50)
 70
 71 # Stop moving
 72 motors.run(LEFT, 0)
 73 motors.run(RIGHT, 0)
 74
 75 # Print total distance traveled
 76 left_dist = counts_to_mm(count_left)
 77 right_dist = counts_to_mm(count_right)
 78 print("Left Distance: ", left_dist, "mm")
 79 print("Right Distance: ", right_dist, "mm")
 80
 81 def update_speed(interval_ms):
 82 # Update speed at given interval.
 83 global last_ms, last_count
 84
 85 # Check if interval has elapsed.
 86 t_ms = ticks_diff(ticks_ms(), last_ms)
 87 if t_ms >= interval_ms:
 88 # Calculate distance traveled.
 89 d_left = enc_count[LEFT] - last_count[LEFT]
 90 d_right = enc_count[RIGHT] - last_count[RIGHT]
 91 # Save state for next time.
 92 last_ms = ticks_ms()
 93 last_count = enc_count.copy()
 94 # Calculate speed
 95 t_sec = t_ms / 1000 # convert to seconds
 96 cur_speed[LEFT] = d_left / t_sec
 97 cur_speed[RIGHT] = d_right / t_sec

Python with Robots Mission Content

©2024 Firia Labs Appendix A 184 of 213

 98 control_speed(LEFT)
 99 control_speed(RIGHT)
100 print("Power: ", power)
101 print_speed_cps()
102
103 def print_speed_cps():
104 # Print current speed in cm per second.
105 cps_left = counts_to_mm(cur_speed[LEFT]) / 10
106 cps_right = counts_to_mm(cur_speed[RIGHT]) / 10
107 print("Left: ", cps_left, "cm/s")
108 print("Right: ", cps_right, "cm/s")
109
110 FEEDBACK_PWR = 0.1 # Impact of speed error on motor power.
111
112 def control_speed(side):
113 # Set motor power to reach target speed.
114 err = target_speed - cur_speed[side]
115 pwr = power[side] + err * FEEDBACK_PWR
116
117 if pwr > 100:
118 pwr = 100
119 elif pwr < -100:
120 pwr = -100
121
122 power[side] = pwr
123 motors.run(side, pwr * direction[side])
124
125
126 def rotate(angle, speed):
127 # Determine direction of L,R wheels.
128 if angle < 0:
129 dir = [-1, +1] # CCW heading
130 else:
131 dir = [+1, -1] # CW heading
132
133 # Full 360 degree rotation in mm
134 # is pi * diameter.
135 circumference = math.pi * TRACK_WIDTH
136 dist_mm = abs(circumference * angle / 360)
137 cm = dist_mm / 10
138 drive(cm, speed, dir)
139
140
141
142 # --- Main program ---
143 enc_state = [sense_slot(LEFT), sense_slot(RIGHT)]
144 enc_count = [0, 0]
145 last_ms = 0
146 last_count = [0, 0]
147 cur_speed = [0, 0] # Current speed in "counts per second"
148 target_speed = 0
149 power = [0, 0]
150
151 while True:
152 # Wait for BTN-0. Good robot.
153 buttons.was_pressed(0) # debounce
154 while True:
155 if buttons.was_pressed(0):
156 break
157
158 motors.enable(True)
159
160 # Turn to the right
161 rotate(90, 10)

Mission 8 Complete

This was a challenging journey!

The wheel encoders themselves weren't too difficult to understand, but the code you crafted to harness their true power was quite an
adventure.

Exploring the principles of rotary encoders.
Creating a measuring wheel that provides true distance.
Building a speedometer and making your 'bot drive an exact distance and speed along a path.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 185 of 213

Mastering angular rotation for true dead reckoning capabilities!

And this code is not just for Robots...

The Process Control Loop you implemented is crucial to modern
appliances, vehicles, heating and air-conditioning, and many other
technologies you rely on daily.
From factories to farms, phones to drones, the computer science
principles in this project are used by professional embedded systems
programmers to craft the core capabilities that move the modern world.

Try Your Skills

Suggested Re-mix Ideas:

Experiment with the constants your code depends on:
The 100ms update interval.
The FEEDBACK_PWR factor.
Keep notes on the effects as you adjust these

constants.
Does the "best" setting depend on a particular journey's
requirements?

Straighten Up your path!
Your code uses current_speed in the feedback loop, but
what about current distance?
Add code to factor-in the total distance traveled in a run,
to ensure both wheels go the same distance.
You're well on your way to advanced PID Control!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 186 of 213

https://en.wikipedia.org/wiki/PID_controller

Mission 9 - All Systems Go!
In this project you'll get to know CodeBot's internal system sensors.

Your 'bot can measure its own battery voltage and CPU
temperature.
And it can sense its orientation as well as impacts and vibration with
the CodeBot accelerometer.

Ah yes, CodeBot is self-aware!

Project Goals:

Code a battery tester so you can tell how much fuel is left in your bot's tank.
Use the CPU temperature to detect changes in the local "weather".
Detect orientation with the CodeBot accelerometer and rotate toward the sky!
Make a motion alarm "guard robot".

Robot, Know Thyself!

Objective 1 - Battery Check

When it comes to monitoring the state of your hardware, battery level is one of the most critical items to track.

CodeBot's system sensors give your 'bot the tools to monitor its battery voltage.
Understanding how the those sensors work is the first step to figuring out how much "fuel" is left in your bot's tank!

Typical AA alkaline batteries provide 1.5 Volts per cell when fresh.

CodeBot has 4 batteries in series, wired as shown. Voltages in series add, so if you're using
Alkalines the total voltage of a brand-new set of batteries would be:

As batteries use up their capacity, their voltage decreases.

Due to battery chemistry, you'll see the full drop in voltage only when the batteries are under
load, like when they're lighting up some LEDs or running the motors.

Concept: System Power Monitoring

The botcore library system object has two functions that allow CodeBot to check the status of its power supply:

Measure power supply voltage (battery or USB)
v = system.pwr_volts()

Am I powered by USB or Battery? (based on Power switch)
on_usb = system.pwr_is_usb()

The first function pwr_volts() returns the float power supply voltage, which might be coming from USB or from the onboard
battery pack, depending on the position of CodeBot's power switch.

Note that even when you're connected to the USB port you can still set the switch to the BATT position so the 'bot draws
its power from the onboard battery pack rather than USB.
Computers and USB chargers typically supply about 5V (4.40V - 5.25V for USB 2.0). With the switch in the USB position
you can confirm that!

The second function pwr_is_usb() returns int value 1 if the switch is currently in the USB position, and 0 if you're running on
batteries.

V ​ = 1.5v ⋅ 4 = 6.0vbatt

Python with Robots Mission Content

©2024 Firia Labs Appendix A 187 of 213

Try it on the REPL

Open the Console and test both of these functions from the system sensors API.

If code is already running you will need to press the check_box_outline_blank Stop button first!
To get started, type from botcore import * on the REPL.
Now check to see if you're running from USB power:

Type system.pwr_is_usb()
The return value will be 1 if the power switch is set to USB, and 0 if not.

When you call system.pwr_volts() it returns the power supply voltage.

Try it a few times. Remember, you can press up-arrow ↑ ENTER to repeat prior commands.
The battery voltage should return a pretty consistent value, but if you load it down it will decrease.

Turn on some LEDs to put a load on the batteries: Enter leds.user(127)
Now repeat the system.pwr_volts() command. See a lower voltage?
Turn the LEDs off with leds.user(0), and try the voltage reading again. Did the voltage increase?

Now that you have a feel for how the power monitor features of the system sensors work, it's time to write some code to put that
knowledge to good use!

Hint:

Having trouble in the REPL?

If code is already running you will need to press the check_box_outline_blank Stop button first.

Before calling either function, call from botcore import *.

Goals:

Call system.pwr_is_usb() in the REPL.

Call system.pwr_volts() in the REPL.

Tools Found: System Status Monitors, LED, Motors, import, Functions, float, int, Print Function, Parameters, Arguments, and Returns

Solution:

N/A

Objective 2 - Battery Tester

Create a New File!

Run It!

Take a look at the console when you run this code.

How's your battery doing?
Check out your test values:

Do the results for each test voltage match the table above?
Maybe you noticed some of the percentages are not very accurate!?

You could adjust the if statements to improve it, or even add more increments.
But this "table-driven" approach is pretty limited.
There must be a better way...

CodeTrek:

 1 from botcore import *
 2
 3 def vbatt_load():

Python with Robots Mission Content

©2024 Firia Labs Appendix A 188 of 213

 4 # Read batt voltage under load
 5 leds.user(0b00001111)

 6 v = # TODO: Get the power supply's voltage

 7 leds.user(0)
 8
 9 return v

10
11 def batt_table(v):

12 if v > 5.5:
13 pct = 1.0
14 elif v > 5.0:
15 pct = 0.75
16 elif v > 4.5:
17 pct = 0.50
18 elif v > 4.0:
19 pct = 0.25
20 else:
21 pct = 0.0

22
23 print("batt_table: ", v, "->", pct)
24 return pct

25
26
27 # Main program
28 # Check my battery
29 vb = vbatt_load()
30 my_capacity = batt_table(vb)

Your new function vbatt_load() returns the power supply's voltage
under load.

Turn on 4 LEDs.

This will draw current from your 'bot's power supply!

Measure your 'bot's power supply voltage!

Use the system function, pwr_volts()!
v = system.pwr_volts()

return the measured voltage.

Don't forget to turn off those LEDs!

batt_table(v) takes a voltage reading and returns
a float between 0.0 and 1.0.

This corresponds to capacity levesl from 0% to 100%.

The table in the instructions was used to create
this if statement chain.

It associates a voltage with a percentage capacity!

Print the change from the input (v) to the
output (pct) and return the output!

Check out the current capacity of your battery!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 189 of 213

31 print("My battery capacity: ", my_capacity)
32
33 # Try some test values
34 batt_table(3.9)
35 batt_table(4.2)
36 batt_table(4.8)
37 batt_table(5.2)
38 batt_table(5.8)
39 batt_table(6.2)

40

Goals:

Define a functon named vbatt_load().

Assign the power supply's voltage to the variable v.

Define a function named batt_table(v).

return a variable pct that represents the parameter v as a float between 0.0 and 1.0.

Assign vb = batt_load() and use vb as the argument for batt_table(vb).

Tools Found: Parameters, Arguments, and Returns, CodeBot LEDs, System Status Monitors, float, Print Function, Variables, Functions, LED

Solution:

 1 from botcore import *
 2
 3 def vbatt_load():
 4 # Read batt voltage under load
 5 leds.user(0b00001111)
 6 v = system.pwr_volts()
 7 leds.user(0)
 8
 9 return v
10
11 def batt_table(v):
12 if v > 5.5:
13 pct = 1.0
14 elif v > 5.0:
15 pct = 0.75
16 elif v > 4.5:
17 pct = 0.50
18 elif v > 4.0:
19 pct = 0.25
20 else:
21 pct = 0.0
22
23 print("batt_table: ", v, "->", pct)
24 return pct
25
26
27 # Main program
28 # Check my battery
29 vb = vbatt_load()
30 my_capacity = batt_table(vb)
31 print("My battery capacity: ", my_capacity)
32
33 # Try some test values
34 batt_table(3.9)
35 batt_table(4.2)
36 batt_table(4.8)
37 batt_table(5.2)
38 batt_table(5.8)

Test a range of voltage values to ensure
your function is functioning correctly!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 190 of 213

39 batt_table(6.2)
40

Objective 3 - Equations To The Rescue!

Rather than using a table, maybe a little math can help here!

You're approximating the battery voltage decay as a straight line.
You may have seen the equation for a line:
Plotting Percent on the Y-axis and Volts on the X-axis, the equation of this line
is:

Check the 'Trek!

Modify your code to use the equation above to calculate battery capacity.

Add a new function def batt_level(v): that uses the equation: percent = (volts / 2) - 2 to calculate and return the
capacity between 0.0 and 1.0
Change your test code to use this new function rather than batt_table(v)

Run It!

Give the new version a try!

Watch the console for the printout of test values.
Cool! More accuracy and the batt_level(v) function actually has fewer lines of code!

CodeTrek:

 1 from botcore import *
 2
 3 def vbatt_load():
 4 # Read batt voltage under load
 5 leds.user(0b00001111)
 6 v = system.pwr_volts()
 7 leds.user(0)
 8
 9 return v
10
11
12 def batt_level(v):

13 pct = # TODO: calculate the battery's capacity

14
15 if pct > 1:

y = mx + b

y = ​ ⋅ x − 22
1

batt_level(v) replaces batt_table(v) from the
previous objective.

It still returns a float value between 0.0 and 1.0.
Instead of relying on a table, it uses an equation.

Calculate the capacity float using the equation:

Where is pct and is v!

pct = (v / 2) - 2

y = ​ ⋅ x − 22
1

y x

Python with Robots Mission Content

©2024 Firia Labs Appendix A 191 of 213

16 pct = 1
17 elif pct < 0:
18 pct = 0

19
20 print("batt_level: ", v, "->", pct)
21 return pct

22
23
24 # Main program
25 # Check my battery
26 vb = vbatt_load()
27 my_capacity = batt_level(vb)

28 print("My battery capacity: ", my_capacity)
29
30 # Try some test values
31 batt_level(3.9)
32 batt_level(4.2)
33 batt_level(4.8)
34 batt_level(5.2)
35 batt_level(5.8)
36 batt_level(6.2)

Goals:

Define the function batt_level(v).

Assign the variable pct = (v / 2) - 2

Call batt_level(vb).

Tools Found: Print Function, Functions, Variables, float

Solution:

 1 from botcore import *
 2
 3 def vbatt_load():
 4 # Read batt voltage under load
 5 leds.user(0b00001111)
 6 v = system.pwr_volts()
 7 leds.user(0)
 8
 9 return v
10
11
12 def batt_level(v):
13 pct = (v / 2) - 2
14
15 if pct > 1:
16 pct = 1
17 elif pct < 0:
18 pct = 0
19

Round off pct in case the equation returns a value outside
of the range 0.0 to 1.0.

Print the translation from v to pct and return pct!

Replace the batt_table(vb) call from last objective
with batt_level(vb).

Test out some voltage values with your new batt_level(v) function!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 192 of 213

20 print("batt_level: ", v, "->", pct)
21 return pct
22
23
24 # Main program
25 # Check my battery
26 vb = vbatt_load()
27 my_capacity = batt_level(vb)
28 print("My battery capacity: ", my_capacity)
29
30 # Try some test values
31 batt_level(3.9)
32 batt_level(4.2)
33 batt_level(4.8)
34 batt_level(5.2)
35 batt_level(5.8)
36 batt_level(6.2)

Objective 4 - Battery Indicator Light

To polish off your battery tester you need a User Interface that doesn't require
watching the console!

This step adds a useful function you could call when a program starts, so there
would be an indication to the user of battery health. If the Battery LED stays lit, it's a
warning to change batteries soon! One blink means the batteries are full. Two blinks
means they're used but still healthy.

Check the 'Trek!

Define a new function called def check_batt(pct): that uses the percent value from batt_level() to activate a special battery
LED.

This red LED is just above the power switch, controlled with leds.pwr(is_on)
Blink the LED once if capacity is over 60%.
Blink it twice if capacity is between 20% and 60%.
Leave the LED lit continuously if capacity is under 20%.

Don't forget to use some test functions to be sure your check_batt() function works as expected for different capacity levels.
Take a look at the example: remove the # comment from one test function at a time and run the program to check each level.

Run It!

Test this code, and make sure your Battery Indicator works as expected.

This would be a good addition to the startup code for any program!

CodeTrek:

 1 from botcore import *
 2 from time import sleep

 3
 4 def vbatt_load():
 5 # Read batt voltage under load
 6 leds.user(0b00001111)
 7 v = system.pwr_volts()
 8 leds.user(0)
 9

Don't forget to import sleep!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 193 of 213

10 return v
11
12 def batt_level(v):
13 pct = (v / 2) - 2
14
15 if pct > 1:
16 pct = 1
17 elif pct < 0:
18 pct = 0
19
20 print("batt_level: ", v, "->", pct)
21 return pct
22
23
24 def check_batt(pct):

25 if pct < 0.2:
26 leds.pwr(True)
27 # TODO: return so the code below doesn't run.

28
29 if pct > 0.6:
30 blinks = 1
31 else:
32 blinks = 2

33
34 while blinks > 0:

35 leds.pwr(True)
36 sleep(0.5)
37 leds.pwr(False)
38 sleep(0.2)

39
40 # TODO: Decrement blinks

41

check_batt(pct) uses the float "percent value" returned from batt_level()
to indicate battery status through the LEDs.

If battery capacity is lower than 0.2, light the LEDs and
leave them on!

Call return, that way the remaining code in the check_batt(pct)
function will only run if battery capacity is above 0.2.

Use the variable blinks to store how many times the LEDs should
blink depending on battery capactiy.

Above 0.6, 1 blink.
Below 0.6, 2 blinks!

Iterate through blinks.

You'll decrement blinks on line 40 so that it
eventually reaches 0!

Blink!

Turn the LED on briefly, then turn it off!
This might be run twice in a row, so make sure to add a small
sleep after your LED is turned off.

Decrement blinks each cycle to ensure it breaks out of this while loop!

blinks = blinks - 1

Python with Robots Mission Content

©2024 Firia Labs Appendix A 194 of 213

42 # Main program
43 vb = vbatt_load()
44 my_capacity = batt_level(vb)
45 print("My battery capacity: ", my_capacity)
46 check_batt(my_capacity)

47
48
49 # Test Code:
50 #check_batt(0.1)
51 #check_batt(0.5)
52 #check_batt(0.8)

Goals:

Define a new function called check_batt(pct).

If battery capacity is under 0.2, turn ON the LEDs and return.

Decrement blinks in your while loop.

Call check_batt(my_capacity)

Tools Found: UI, Functions, LED, Comments, Loops, float, Variables, Iterable

Solution:

 1 from botcore import *
 2 from time import sleep
 3
 4 def vbatt_load():
 5 # Read batt voltage under load
 6 leds.user(0b00001111)
 7 v = system.pwr_volts()
 8 leds.user(0)
 9
10 return v
11
12 def batt_level(v):
13 pct = (v / 2) - 2
14
15 if pct > 1:
16 pct = 1
17 elif pct < 0:
18 pct = 0
19
20 print("batt_level: ", v, "->", pct)
21 return pct
22
23
24 def check_batt(pct):
25 if pct < 0.2:
26 leds.pwr(True)
27 return
28
29 if pct > 0.6:
30 blinks = 1
31 else:
32 blinks = 2
33
34 while blinks > 0:
35 leds.pwr(True)
36 sleep(0.5)
37 leds.pwr(False)
38 sleep(0.2)
39
40 blinks = blinks - 1
41
42 # Main program

Give your battery indicator a try!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 195 of 213

43 vb = vbatt_load()
44 my_capacity = batt_level(vb)
45 print("My battery capacity: ", my_capacity)
46 check_batt(my_capacity)
47
48
49 # Test Code:
50 #check_batt(0.1)
51 #check_batt(0.5)
52 #check_batt(0.8)

Objective 5 - Sensing Temperature

Your bot's CPU has an internal temperature sensor.

The system sensors API lets you read the temperature in Celsius or Fahrenheit using
system.temp_C() and system.temp_F() respectively.

The CPU's reported temperature is influenced by:

The external temperature of the air surrounding the 'bot, or in contact with the CPU.
The level of activity in the processor.

NOTE: The CodeBot CB3 will generally report about 10°C warmer than the CB2 due to:

Differences in the built-in temperature sensors.
The metal shield covering the CB3's sensor and electronic parts.

Create a New File!

Use the File → New File menu to create a new file called TemperatureCheck.

Check the 'Trek!

Write a while True: loop that:
1. Reads the temperature in °C. (use the system.temp_C() function)
2. Prints the temperature to the console.
3. Sleeps 200ms (use the sleep_ms() function from the time module)

Run It!

Watch the output on the console as your program runs.

What's the normal "ambient" temperature?

If you have a CodeBot CB2 you can gently touch the CPU with your finger to observe a
change in temperature.

Remove your finger and watch the temperature decrease slowly.
Can you make it cool faster by blowing cool air across it?

CodeTrek:

1 from botcore import *
2 from time import sleep_ms

3
4 while True:
5 # TODO: code this part

Don't forget to import sleep_ms from the time module!

This part is up to you!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 196 of 213

Goals:

Read the tempterature in °C using system.temp_C().

Print the temperature.

Sleep for 200ms using sleep_ms().

Tools Found: CPU and Peripherals, System Status Monitors, Loops, Print Function, Time Module

Solution:

 1 from botcore import *
 2 from time import sleep_ms
 3
 4 while True:
 5 # TODO: code this part
 6 t = system.temp_C()
 7 print(t)
 8 sleep_ms(200)

Objective 6 - Smoothing The Data

You might notice that the "raw" temperature readings jump around a bit. Some of these
changes aren't due to variations in temperature, but instead to the accuracy limitations of the
sensor itself. The data is noisy!

Your next step will be to smooth the data out with a moving average algorithm.

Check the 'Trek!

Above your while True: loop, add a global variable samples = [] initialized to an empty list.

Inside your loop when you read the temperature, append it to the samples list.
samples.append(temperature)

After you've collected 5 samples, average them and print() the result!
Define a function def avg_list(nlist): that takes a list of numbers and returns the average.

"Average" (also called "mean") is the sum of the numbers divided by the count.
You can experiment with different "smoothing widths", but 5 is a good start.
Empty the list with samples.clear() after you average it.

Run It!

How's the temperature feeling to ya?

You will still see variations, but they should be smaller now.
Averaging is a good way to smooth out noisy data!

This technique is useful for lots of things - not just temperature :-)

CodeTrek:

 1 from botcore import *
 2 from time import sleep_ms

1. Read the temperature.
2. Print the temperature.
3. Sleep for 200ms.

If you get stuck, check the instructions!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 197 of 213

 3
 4 def avg_list(nlist):

 5 count = len(nlist)

 6 sum = 0

 7 i = 0
 8
 9 # Sum up all the numbers in nlist.
10 while i < count:

11 sum = sum + nlist[i]
12 i = i + 1

13
14 # TODO: Calculate and return the average

15
16 samples = []

17
18 while True:
19 t = system.temp_C()
20 samples.append(t)

21 if len(samples) == 5:
22 average = avg_list(samples)

23 samples.clear()
24 print("Average temp=", average)

avg_list(nlist) takes a list of numbers (in your case, temperature readings),
and returns the average.

count represents the length of the list nlist.

The len(list) function returns the length of the supplied list.
If you've followed the code exactly, count will be 5!

sum represents the total value of all the numbers in nlist added together!

Loop through each index in nlist.

You'll be iterating i at the end of the loop!

i represents the index or position in the list.

Add the number at the current index to sum!
Iterate i after!

The average is the sum divided by the count.

return (sum / count)!

The global variable samples is used to store
temperature readings.

When the temperature is read, add it to your samples global.

When samples has 5 temperature readings, use the list
as an argument to your new function, avg_list(nlist)!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 198 of 213

#@10
25
26 sleep_ms(200)
#@11

Goals:

Define a function avg_list(nlist).

return the sum divided by the count from avg_list(nlist).

Empty the list samples using samples.clear().

Tools
Found:

Locals and Globals, list, Functions, Parameters, Arguments, and Returns, Variables, Keyword and Positional Arguments, Loops,
Print Function

Solution:

 1 from botcore import *
 2 from time import sleep_ms
 3
 4 def avg_list(nlist):
 5 count = len(nlist)
 6 sum = 0
 7 i = 0
 8 # Sum up all the numbers in nlist.
 9 while i < count:
10 # Add this list item to 'sum', and store total in 'sum'.
11 sum = sum + nlist[i]
12 i = i + 1
13
14 # Calculate and return the average
15 return (sum / count)
16
17 samples = []
18
19 while True:
20 t = system.temp_C()
21 samples.append(t)
22 if len(samples) == 5:
23 average = avg_list(samples)
24 samples.clear()
25 print("Average temp=", average)
26
27 sleep_ms(200)

Objective 7 - Temperature-Controlled Lights!

If you have a CodeBot CB3 the code below will be difficult to test without applying a big
change to the ambient temperature at the "can" of the CPU module.

That can be achieved with a hair-dryer pointed at the module... but be careful not to
heat it too hot to touch!
Don't worry if you can't heat/cool it though. Try the code below to see how a
temperature-controlled system works.

If you have a CodeBot CB2 you'll have an easier time "moving the needle" by using your
finger to heat the CPU.

First make note of the average ambient temperature your 'bot is reading.

This can be used as a "baseline" temperature.

Your challenge is to make CodeBot respond with LEDs based on temperature:
No LEDs should be lit if the temperature is near the baseline.

You need a "deadband" of about 3°C around the baseline.
Seriously! In a control system that's what you call the range or band of input values where the output doesn't change.

Light the red User LEDs when the temperature rises above the baseline plus deadband.
Light the green LS LEDs when the temperature falls below the baseline minus deadband.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 199 of 213

Check the 'Trek!

Define a new function called def check_baseline(t) which compares a temperature against the baseline value, and controls the
LEDs per the above algorithm.

Call this new function from your main loop, after each time you print() the temperature to the console.

Run It!

You may need to adjust your BASELINE a little higher based on where you want it.

Try adjusting the DEADBAND constant also!

Hey, You've Made a Thermostat!

Think about it -

If the temperature is too low, turn on the heating element;
If the temperature is too high, turn on the cooling fan!
Keep a deadband around the target temperature so you don't constantly cycle heater/fan, wearing the equipment out.

CodeTrek:

 1 from botcore import *
 2 from time import sleep_ms
 3
 4
 5 BASELINE = # Your measured temperature value here!

 6 DEADBAND = 3.0

 7
 8 def check_baseline(t):

 9 # TODO: Turn Off LEDs

10
11 # Check if t is more than DEADBAND away from BASELINE.
12 if t > BASELINE + DEADBAND:
13 # TODO: Light red User LEDs

14 # TODO: elif t < ???

Set the BASELINE variable to your ambient temperature.

Confused? Just use the average temperature from last objective!

The DEADBAND represents an acceptable range of temperature variability.

check_baseline(t) takes a temperature reading (t) and controls the
LEDs based on it's relationship to the BASELINE.

Start by clearing the LED state by turning off the LEDs. You'll be
using both ls and user LEDs.

leds.ls(0b00000)
leds.user(0b00000000)

When the temperature t rises above BASELINE + DEADBAND,
turn on the red User LEDs.

leds.user(0b11111111)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 200 of 213

15 leds.ls(0b11111)
16
17
18 def avg_list(nlist):
19 count = len(nlist)
20 sum = 0
21 i = 0
22 # Sum up all the numbers in nlist.
23 while i < count:
24 # Add each item from list to sum
25 sum = sum + nlist[i]
26 i = i + 1
27
28 return (sum / count)
29
30 samples = []
31
32 while True:
33 t = system.temp_C()
34 samples.append(t)
35 if len(samples) == 5:
36 average = avg_list(samples)
37 samples.clear()
38 print("Average temp=", average)
39 check_baseline(average)

40
41 sleep_ms(200)

Goals:

Initialize a BASELINE constant to your ambient temperature.

Define a new function called check_baseline(t).

if t > BASELINE + DEADBAND:, turn on all User LEDs.

Tools Found: CPU and Peripherals, LED, CodeBot LEDs, Constants, Variables, Functions, Print Function

Solution:

 1 from botcore import *
 2 from time import sleep_ms
 3
 4 BASELINE = 38
 5 DEADBAND = 3.0
 6
 7 def check_baseline(t):
 8 # Turn Off LEDs
 9 # TODO: code this part
10 leds.ls(0b00000)
11 leds.user(0b00000000)
12
13 # Check if t is more than DEADBAND away from BASELINE.
14 # TODO: fill-in code below
15 if t > BASELINE + DEADBAND:
16 # Light red User LEDs
17 leds.user(0b11111111)
18 elif t < BASELINE - DEADBAND:
19 leds.ls(0b11111)
20
21

When the temperature t falls below BASELINE - DEADBAND,
turn on the green LS LEDs.

elif t < BASELINE - DEADBAND:

Call your new function after printing the average temperature.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 201 of 213

22 def avg_list(nlist):
23 count = len(nlist)
24 sum = 0
25 i = 0
26 # Sum up all the numbers in nlist.
27 while i < count:
28 # Add each item from list to sum
29 sum = sum + nlist[i]
30 i = i + 1
31
32 return (sum / count)
33
34 samples = []
35
36 while True:
37 t = system.temp_C()
38 samples.append(t)
39 if len(samples) == 5:
40 average = avg_list(samples)
41 samples.clear()
42 print("Average temp=", average)
43 check_baseline(average)
44
45 sleep_ms(200)

Objective 8 - Accelerometer

Your 'bot can detect impacts with other objects, changes in motion, and orientation.

All thanks to the CodeBot Accelerometer, the tiny chip shown at right!
CodeBot's accelerometer measures the force of acceleration in 3-directions: X, Y,
and Z.

Pulling some g's!

In the picture at right, if the circuit board is positioned flat (horizontal) and motionless on
Earth, then it will have 1g pulling down in the -Z direction.

In physics the letter g means Earth's gravitational acceleration (approximately
9.8m/s2)
So in this motionless case you would expect the accelerometer to measure:

X = 0 g (pointed toward the horizon, no significant gravitational acceleration)
Y = 0 g (ditto, horizontal)
Z = -1 g (Earth's gravity pulling straight down, opposite to the +Z direction)

Concept: Accelerometer Orientation API

The CodeBot Accelerometer is a MEMS accelerometer.

MEMS stands for "Micro-Electro-Mechanical System"
Inside this little chip are tiny silicon structures that really move!
...and of course, electronic components to sense them.

The botcore library exposes the accel object, which provides access to the chip's many capabilities.

Some highlights of basic orientation functions:

read() # Read current axis values.
 # Returns a tuple (x, y, z) of ints.
 # 16-bit signed int range: -32767 to +32768
 # Default full-scale acceleration = ±2g

dump_axes() # Print 3-axis values to debug console.

Now That You're Oriented

What value do you expect accel.read() to return for the "horizontal" case above?

Seems like (0.0, 0.0, -1.0) would make sense, right?
But wait! According to the API note, the read() function returns a tuple of integer, not float values.
The values are 16-bit signed ints which max-out at 32,768 (215)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 202 of 213

So the max full-scale value of +2g would be 32,768.
That means our -1g would be (-32767 / 2) = -16,383

Create a New File!

Use the File → New File menu to create a new file called AccelTest.

Check the 'Trek!

Write some code to test the Z = -16,383 theory.
Make a while True: loop that constantly prints the 3-axis values.

Using accel.dump_axes() will print it to the console for you!
Use sleep_ms(200) to slow it down a bit.

Run It!

So... how level is your desk?

You'll need to support the front of your 'bot to keep the circuit-board level.
When the Z-axis reads about -16383 you'll know it's level!

Notice that the X-axis doesn't change much as you lift the front of your bot.
But what happens if you turn CodeBot on its side?
Try resting it on its right wheel, with X-axis pointing skyward.

What value does Z have when the 'bot is upside down?

CodeTrek:

1 from botcore import *
2 from time import sleep_ms

3
4 while True:
5 # TODO: call accel.dump_axes()

6 # TODO: sleep for 200ms

Goals:

Call accel.dump_axes().

Call sleep_ms(200).

Import sleep_ms.

Tools Found: Accelerometer, import, tuple, int, float, Print Function

Solution:

1 from botcore import *
2 from time import sleep_ms

Don't forget to import sleep_ms from time!

accel.dump_axes() prints to the console for you!

Just call it!

Sleep for 200ms using sleep_ms.

sleep_ms(200)

Python with Robots Mission Content

©2024 Firia Labs Appendix A 203 of 213

3
4 while True:
5 accel.dump_axes()
6 sleep_ms(200)

Objective 9 - Reach for the Stars

One way to put the CodeBot accelerometer to use is for navigation.

You already know how to track your bot's orientation very precisely.
With such knowledge you could create a balancing vehicle or a quadcopter drone...

But for your first accelerometer-driven-motor project, keep it simple.

Rotate to Face Skyward!

Your challenge is to monitor the orientation, and control the motors to keep your nose pointed up at all
times.

Take a look at the image to the right, with the bot oriented vertically.
You need to rotate the 'bot until Y is negative and X is near zero.

A Y value close to -16,383 would be pointing straight up!
But Y is negative over a wide range.

Maybe you could use just the X-axis to determine rotation direction!?
If X is negative, rotate counter-clockwise;
If X is positive, rotate clockwise.

Check the 'Trek!

Now add some action in the while True: loop of your AccelTest program!

Implement the Face Skyward! challenge!
Try using just the X value from the accelerometer to control the motors.

Run It!

Test this out on an inclined surface!

A piece of sign-board works great, or even a large book will do.
Does your 'bot attempt to face uphill, as you change the incline?

My 'bot looks pretty wobbly running this code! How about yours?

You can see that it's trying to face uphill, but it keeps moving back and forth!

CodeTrek:

 1 from botcore import *
 2
 3 motors.enable(True)
 4 SPEED = 50

 5
 6 while True:
 7 x, y, z = accel.read()

 8 print((x,y,z))

Set a SPEED constant and enable the motors!

Yes, you can assign the tuple returned by accel.read() to a variable list.

What's up with the double-parentheses in the print() statement?

Python with Robots Mission Content

©2024 Firia Labs Appendix A 204 of 213

 9
10 if x < 0:
11 # Rotate counter-clockwise at SPEED
12 # TODO: code the motors.run() part

13 else:
14 # Rotate clockwise at SPEED
15 # TODO: code the motors.run() part

Goals:

Assign x, y, z as accel.read() in one line!

if x < 0:

rotate your 'bot counter-clockwise!

else:

rotate your 'bot clockwise!

Tools Found: Accelerometer, Motors, tuple, Variables, Constants

Solution:

 1 from botcore import *
 2
 3 motors.enable(True)
 4 SPEED = 30
 5
 6 while True:
 7 x, y, z = accel.read()
 8 print((x,y,z))
 9
10 if x < 0:
11 motors.run(LEFT, -SPEED)
12 motors.run(RIGHT, SPEED)
13 else:
14 motors.run(LEFT, SPEED)
15 motors.run(RIGHT, -SPEED)

Objective 10 - Upgrade!

Okay, this code needs some work!

When you face a new coding challenge, often the best approach is: "The simplest thing that could possibly work."

Many times you'll find the simple solution works great!
...and when it doesn't, you learn something!

In this case you've learned that CodeBot will continuously overshoot the top position.

It "oscillates" back and forth. Not what you want!
So this simplest solution needs improvement.

It bundles (x,y,z) together as a tuple for print()

You've done this before!

Run the LEFT motor negative and the RIGHT motor positive.

motors.run(LEFT, -SPEED)
motors.run(RIGHT, SPEED)

Now run the LEFT motor positive and the RIGHT motor negative!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 205 of 213

Check the 'Trek!

Okay, time for some improvements to your code!

There are a lot of ways to code this... Feel free to experiment on your own.
To the right is a diagram that might help you think about how the X and Y values vary when
the 'bot rotates on an incline.
Since the CodeBot accelerometer's Y-axis is angled downward at rest, the value 7000 is an
approximation of "level". (Feel free to adjust that value based on your measurements!)
The range of abs(x) < 4000 is an approximate zone where you may want to slow down the
rotation so you don't overshoot the top.

The code in the 'trek is just like the simple approach from the previous objective, but adds a slow
down proportional to the X value near the top.

Run It!

This should allow your 'bot to face uphill more steadily.

Notice when it centers on the top, the motor adjustments are very small!

Test this code thoroughly!

Try it on a surface you can move around.
Also try watching the console as you rotate the 'bot in your hand.

There so much more you can do with making the robot respond to its orientation.

Keep experimenting!

CodeTrek:

 1 from botcore import *
 2
 3 motors.enable(True)
 4 SPEED = 50
 5
 6 while True:
 7 x, y, z = accel.read()
 8 print((x,y,z))
 9
10
11 if y < 7000 and abs(x) < 4000:

Lets go through both of these statements individually!

y < 7000

If y is at or below "level".
To be simple, if the nose isn't pointing up!

abs(x) < 4000

If x is between -4000 and 4000.
Think of it as "if the wheels have a significantly different tilt".

Python with Robots Mission Content

©2024 Firia Labs Appendix A 206 of 213

12 # Near vertical: set speed proportional to X-axis
13 rot_spd = SPEED * (x / 4000)

14 elif x < 0:
15 # TODO: Set rot_spd when x < 0

16 else:
17 rot_spd = SPEED
18
19 # Rotate
20 motors.run(LEFT, rot_spd)
21 motors.run(RIGHT, -rot_spd)

22

Goals:

Use abs(x) in an if statement.

When your 'bot is near vertical, set rot_spd to SPEED * (x / 4000).

Tools Found: Accelerometer, Print Function, Variables, Motors

Solution:

 1 from botcore import *
 2
 3 motors.enable(True)
 4 SPEED = 50
 5
 6 while True:
 7 x, y, z = accel.read()
 8 print((x,y,z))
 9
10
11 if y < 7000 and abs(x) < 4000:
12 # Near vertical: set speed proportional to X-axis
13 rot_spd = SPEED * (x / 4000)
14 elif x < 0:
15 rot_spd = -SPEED
16 else:
17 rot_spd = SPEED
18
19 # Rotate
20 motors.run(LEFT, rot_spd)
21 motors.run(RIGHT, -rot_spd)
22

Quiz 1 - Checkpoint

Balance your 'bot on it's side on one of it's
wheels. That's a very different tilt!

When this if statement triggers, your 'bot is nearly vertical! Go slow!

Almost there!

The closer to pointing up, the slower rot_spd will be!

When this statement triggers your 'bot is far from pointing up.

Rotate to level out the wheels!

rot_spd = -SPEED

Use your rot_spd variable to power your motors!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 207 of 213

Question 1: Approximately what value would the Y-axis have if you pointed CodeBot toward the sky?

(Proximity sensors pointed up)

done -16,383

close -1.0

close +16,384

close 0

Question 2: The X-axis value would be zero if your 'bot was facing straight up.

In the code above, what would the speed `rot_spd` be in that case?

done 0

close -SPEED

close +SPEED

close 50

Question 3: What would the value of y be after the following assignment statement?

x, y, z = (30, 20, 40)

done 20

close 30

close 40

close (30, 20)

close (30, 20, 40)

Question 4: The accel.read() function returns a tuple with 3 integers (x, y, z).

If you wrote: vals = accel.read(), which axis would vals[1] refer to?

done Y-axis

close X-axis

close Z-axis

Objective 11 - Guard Bot

Powerful and Sensitive!

Prepare to be amazed at the capabilities of the CodeBot accelerometer. Ready to
pounce at the slightest movement!

There are quite a few advanced capabilities built into the hardware of this
device.

It even has the capability to detect motion based on programmable
thresholds for any of its 3-axes.
Configuring all those built-in capabilities is left for a future project...

Your current challenge is to combine your accelerometer knowledge with
Python code to create a sensitive motion detector!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 208 of 213

Algorithm

1. In a loop, continuously sample the accelerometer with accel.read()
2. Each time, compare the values from the previous read() to the current one.
3. If the difference between readings is greater than a configured sensitivity threshold SENS, sound the ALARM!
4. Wait a configured DELAY ms between samples, to allow time for motion to happen.

Create a New File!

Use the File → New File menu to create a new file called GuardBot.

Check the 'Trek!

Define a function def alarm() that will sound a short "alert" tone.
Make constants for SENS and DELAY to control sensitivity.
Inside your while True: loop:

Use sleep_ms(DELAY) between samples.
Save the previous sample to compare with the current one.
Just compare difference in X-axis values: dx = now[0] - before[0]
Use abs() to get the magnitude of the difference for comparison with SENS.

Run It!

Try some different values for SENS and DELAY.

Pretty sensitive, right?

CodeTrek:

 1 from botcore import *
 2 from time import sleep_ms
 3
 4 def alarm():

 5 # Alert - motion detected!
 6 print("Alarm!")
 7
 8 # TODO: Make a short beep-boop with spkr.
 9 # (keep under 200ms total)

10
11 # Sensitivity Configuration
12 SENS = 50 # accelerometer value difference
13 DELAY = 100 # time between samples

alarm() sounds a short alert tone.

You'll call it when your 'bot senses movement.

Sound the alarm! This is as simple as the following steps:

1. Turn the speaker on.
2. Wait a bit (start with 200ms).
3. Turn the speaker off.

I implemented it like this:

spkr.pitch(500)
sleep_ms(200)
spkr.off()

SENS

Represents the sensitivity threshold.
Determines how much x needs to change to trigger the alarm!

DELAY

Python with Robots Mission Content

©2024 Firia Labs Appendix A 209 of 213

14
15 # Take first sample (x, y, z)
16 now = accel.read()

17
18 while True:
19 # Delay for motion to happen
20 sleep_ms(DELAY)

21
22 # Remember last sample
23 before = now

24
25 # Take a new sample
26 now = accel.read()

27
28 # Calculate X-axis difference (movement)
29 dx = now[0] - before[0]

30
31 # Compare magnitude of difference to threshold
32 if abs(dx) > SENS:
33 alarm()

Goals:

Define a function called alarm().

Sound the alarm by:

1. Turning the speaker on.
2. Waiting a bit (using sleep_ms).
3. Turning the speaker off.

Compare the difference in X-axis values by assigning dx as now[0] - before[0].

Tools Found: Accelerometer, Functions, Constants

Solution:

Represents the time between samples.
Determines how frequently we check if the alarm is triggered.

now represents the most recent sample!

Go ahead a take one now to initialize it.

Apply the DELAY with sleep_ms.

before represents the last sample.

You just called sleep_ms(DELAY), now is old!
Assign now to before, you'll update now on the next line.

Refresh now!

Calculate the difference between now and before!

If x is outside the range of SENS to -SENS, your 'bot moved!

Trigger the alarm!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 210 of 213

 1 from botcore import *
 2 from time import sleep_ms
 3
 4 def alarm():
 5 # Alert - motion detected!
 6 print("Alarm!")
 7 spkr.pitch(500)
 8 sleep_ms(200)
 9 spkr.off()
10
11 # Sensitivity Configuration
12 SENS = 50 # accelerometer value difference
13 DELAY = 100 # time between samples
14
15 # Take first sample (x, y, z)
16 now = accel.read()
17
18 while True:
19 # Delay for motion to happen
20 sleep_ms(DELAY)
21
22 # Remember last sample
23 before = now
24
25 # Take a new sample
26 now = accel.read()
27
28 # Calculate X-axis difference (movement)
29 dx = now[0] - before[0]
30
31 # Compare magnitude of difference to threshold
32 if abs(dx) > SENS:
33 alarm()

Objective 12 - Guard Bot 2: Guard Harder

Detecting on All 3 Axes

Your program is great at detecting movement on the X-axis.

What if someone were to carefully whisk your 'bot away while keeping the wheels level?
The alarm wouldn't sound!

You can fix that gap by detecting movement on all 3 axes!
X, Y and Z

Check the 'Trek!

Modify your code to detect motion in all 3 directions.

Use the or operator to combine multiple comparisons!

Run It!

You may want to adjust SENS and DELAY again.

Can you make it impossible to move CodeBot without detection?

CodeTrek:

 1 from botcore import *
 2 from time import sleep_ms
 3
 4 def alarm(dx, dy, dz):

Update alarm() to accept dx, dy, dz as arguments.

Python with Robots Mission Content

©2024 Firia Labs Appendix A 211 of 213

 5 # Alert - motion detected!
 6 print("Alarm: ", (dx, dy, dz))

 7
 8 spkr.pitch(500)
 9 sleep_ms(200)
10 spkr.off()
11
12
13 # Sensitivity Configuration
14 SENS = 50 # accelerometer value difference
15 DELAY = 100 # time between samples
16
17 # Take first sample (x, y, z)
18 now = accel.read()
19
20 while True:
21 # Delay for motion to happen
22 sleep_ms(DELAY)
23
24 # Remember last sample
25 before = now
26
27 # Take a new sample
28 now = accel.read()
29
30
31 # Calculate difference (motion)
32 dx = now[0] - before[0]
33 dy = now[1] - before[1]
34 dz = now[2] - before[2]

35
36 if # TODO: trigger if ANY of the 3 axes break the SENS thresh
37 alarm(dx, dy, dz)

38

Goals:

Trigger the alarm if ANY of the 3 axes break the SENS threshold.

Update alarm() to take dx, dy, dz as arguments.

Tools Found: Logical Operators, Keyword and Positional Arguments, Print Function

Solution:

 1 from botcore import *
 2 from time import sleep_ms
 3
 4 def alarm(dx, dy, dz):
 5 # Alert - motion detected!
 6 print("Alarm: ", (dx, dy, dz))
 7
 8 spkr.pitch(500)
 9 sleep_ms(200)
10 spkr.off()

Print the axis values that caused the alarm to trigger!

Calculate the difference in motion for all 3 axes.

Last objective you used abs(dx) > SENS to determine if the 'bot had been moved.

Use all 3 axes this time!
if abs(dx) > SENS or abs(dy) > SENS or abs(dz) > SENS:

Python with Robots Mission Content

©2024 Firia Labs Appendix A 212 of 213

11
12 # Sensitivity Configuration
13 SENS = 50 # accelerometer value difference
14 DELAY = 100 # time between samples
15
16 # Take first sample (x, y, z)
17 now = accel.read()
18
19 while True:
20 # Delay for motion to happen
21 sleep_ms(DELAY)
22
23 # Remember last sample
24 before = now
25
26 # Take a new sample
27 now = accel.read()
28
29
30 # Calculate difference (motion)
31 dx = now[0] - before[0]
32 dy = now[1] - before[1]
33 dz = now[2] - before[2]
34
35 # Compare differences to threshold
36 if abs(dx) > SENS or abs(dy) > SENS or abs(dz) > SENS:
37 alarm(dx, dy, dz)
38

Mission 9 Complete

You've examined many of your bot's subsystems

Battery health will no longer be a mystery to you!
And you can sense if things are starting to heat up... or get chilly.
Your code can behave differently based on orientation.
And respond instantly to even the slightest movement!
...and there's so much more to explore!

You already use this kind of code daily!

Your phone tracks and displays its battery usage.
Electronic thermostats control temperature in most buildings.
Accelerometers are used in everything from smart-watches to game-controllers.
...now you are in the game. Code On!

Try Your Skills

Suggested Re-mix Ideas:

Battery Life Experiment: Which brand/type of batteries last the longest?
Set up a test! Every 5 minutes print() the voltage to the debug console.
Also print ticks_ms from the time module to track time and detect reboots.

Fall Detector: Use the CodeBot accelerometer to detect if your 'bot is falling.
Naturally your 'bot will want to scream if that's the case. Make it so!
Clue: When you're in free-fall (or outer space) it's nearly zero-g in all 3-axes!

Bump-Bot: Move forward until you detect an impact. Then rotate a random amount and go again!
Okay, not very graceful... but fun!

Python with Robots Mission Content

©2024 Firia Labs Appendix A 213 of 213

